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14 lectures given in the autumn term to second year physicists as part of the
Maths II course

Lecturer: Professor Peter Main

About the course
As the name implies, vector calculus is a combination of vector algebra and calculus. It is an
elegant branch of mathematics that is extremely useful to physicists as it is the mathematics
of fields. You will already have encountered electric, magnetic and gravitational fields, but
you are soon to come across many more. Vector calculus gives you the mathematical tools to
manipulate fields, to do calculations involving fields, to describe their properties and to
characterise them precisely. It is an important branch of mathematical physics.

As we live in a three-dimensional world, the variables we will deal with are x, y, z, i.e. three-
dimensional space. Towards the end of the course, time will be introduced as an extra
variable – not everything stands still and we need to be able to deal with things that move or
change with time.

What you need to know
It is assumed that you are already familiar with both vector algebra and the calculus of
functions of more than one variable. In particular, make sure you know about:

Vector algebra: Cartesian components, dot and cross products, triple products.
Calculus: partial differentiation, total differential, differential operators, multiple integrals.
Coordinate systems: Cartesian, spherical polar, cylindrical polar.

Mathematics provides the framework to make difficult things easy.

http://www-users.york.ac.uk/~pm1/PMweb/teaching.htm
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Revision

Vector algebra
A vector is a quantity that has both magnitude and direction. It is useful in physics because it
can be used to represent velocity, acceleration, momentum, force, position, displacement and
many other quantities. The following is a review of the essentials of vector algebra that will
be used in this term’s mathematics course.

Representation
The algebraic symbol for a vector may be written in bold as a, or
underlined as a. In a diagram it is represented by an arrow:

The magnitude of a can be written as a, which is a scalar quantity and its direction can be
given by a unit vector n. The magnitude of n is unity, hence its name. It is a dimensionless
quantity and is used only to define a direction.

We can therefore write a as an where the magnitude and direction are given separately.

Cartesian components
A vector is often described in terms of its Cartesian components, i.e. the components of the
vector parallel to the x-, y- and z-axes.

The directions of the axes are given by the unit vectors i, j, and k so that a vector may be
written in terms of its components as a = a1i + a2j + a3k

Pythagoras’s theorem gives the magnitude of the vector as 2
3

2
2

2
1 aaaa 

Dot product
There are two ways of multiplying vectors, depending upon the context. The dot product of a
and b is written as a.b and the result of the multiplication is a scalar. It is therefore also
called a scalar product.

The result of the multiplication is a.b = a b cos where  is the angle between the vectors.
This definition shows that a.b = b.a, i.e. the vectors commute.

It can be seen in the diagram that b cos is the projection of b on a.
This is often a useful way of thinking about scalar products, i.e. as a
multiplied by the projection of b. It is also used to resolve one vector
in the direction of another.

If the vectors are orthogonal to one another, i.e. at right angles, then
a.b = 0

Also, the definition of the dot product leads to a.a = a2

The dot products of the unit vectors i, j and k are therefore:

i.i = j.j = k.k = 1; i.j = j.i = 0; i.k = k.i = 0; j.k = k.j = 0

When the vectors are expressed in terms of their Cartesian components, so that a = a1i + a2j
+ a3k and b = b1i + b2j + b3k, the dot product becomes (a1i + a2j + a3k).(b1i + b2j + b3k).
Multiplying out the brackets and using the dot products of the unit vectors given above
results in

a.b = a1 b1 + a2 b2 + a3 b3

b

a

b cos


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Cross product
The other way of multiplying vectors is the cross product, written as a×b which results in a
vector. It is therefore also called a vector product.

The vector product is defined by a×b = ab sin n
where  is the angle between the vectors and n is a unit vector perpendicular to both a and b
such that a, b, n form a right-handed set.

This definition requires that a×b = – b×a since reversing the order of the vectors changes
the sense of n, i.e. it points in exactly the opposite direction. You must always be careful of
the order of the vectors when dealing with cross products.

A geometric interpretation of the cross product is shown in the
diagram. The two vectors a and b define the parallelogram and
the magnitude of a×b is its area. The direction of a×b is normal
to the plane of the parallelogram.

If the two vectors are parallel, the cross product gives the null
vector. In particular, a×a = 0

The cross products of the unit vectors i, j and k are:

i×j = k; j×k = i; k×i = j; i×i = j×j = k×k = 0

Note that, in the first three relationships, the vectors are always in the same cyclic order.

With a = a1i + a2j + a3k and b = b1i + b2j + b3k, and using the above relationships, the cross
product becomes

(a1i + a2j + a3k) × (b1i + b2j + b3k) = (a2b3-a3b2)i + (a3b1-a1b3)j + (a1b2-a2b1)k

Fortunately, there is an easier way of expressing this:

321

321

bbb

aaa

kji

ba 

Expansion of the determinant gives the same result as above.

Scalar triple product
Triple products of vectors frequently arise. The scalar triple product, written as a.b×c,
results in a scalar quantity, hence its name. To make mathematical sense, the cross product
must be evaluated first, giving a vector which is dotted with a.

A geometrical interpretation of the scalar triple product is
shown in the diagram. The three vectors define a
parallelepiped. The magnitude of b×c gives the area of the
base and its direction is normal to the base. The dot
product with a therefore resolves a in the direction of b×c,
giving the vertical height. Area of base multiplied by the
height gives the volume of the parallelepiped.

We therefore have the result that a.b×c = a×b.c since the same three vectors are involved
and therefore give the same volume.

Similarly: a.b×c = b.c×a = c.a×b = -c.b×a = -b.a×c = -a.c×b

Clearly, if two of the vectors are parallel, the scalar triple product must have a value of zero.

a

b

a×b

b

c

a

b×c
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Vector triple product
The other triple product that arises is the vector triple product, so called because it results in a
vector quantity.

It is written as a×(b×c) or (a×b)×c. Note that the brackets are necessary to indicate which
product is performed first because (a×b)×c ≠ a×(b×c)

While providing a very compact expression, vector triple products are awkward to deal with.
For the purposes of algebraic manipulation, they are nearly always changed to an alternative
expression using the standard identity:

a×(b×c) = (a.c) b – (a.b) c

Straight line
Straight lines in 3D space are most conveniently represented using vectors.

The position of the line is given by specifying a point on it, e.g. the point
a, and its direction is given as parallel to the vector b:

r() = a +  b
where r is the position vector of a point on the line and the scalar
variable  moves the point along the line.

If the line is defined as going through the two points a and b, then the vector b-a is in the
direction of the line and its equation is therefore: r() = a +  (b-a)

Space curve
A space curve is a curve in 3D space which may be used, for example, to describe the path of
a particle in a force field.

An example of a space curve is: r() = a cos i + a sin j + b  k
where r() is the position vector of a point on the curve as a function of . As  varies, the
position vector traces out the curve.

In this example, the i and j components trace out a circle of radius a as  varies. In addition
to this, the k component varies linearly to move the particle along the z-axis, making the
space curve into a helix lying along the z direction with a pitch of 2b.

Differentiation of vectors
If the vector is defined as a function of one or more variables, the possibility arises of
differentiating the vector function. This is a common operation in vector calculus.

Taking the above space curve as an example, the derivative with respect to  is obtained by
differentiating each component separately:

kji
r

baa
d

d
 


cossin

which can be rewritten as: dr = (-a sin i + a cos j + b k) d

The infinitesimal vector dr is the displacement required to move
from r() to r(+d), i.e. r(+d) = r() + dr

Since both r() and r(+d) lie on the space curve, the vector dr must lie along the curve, so
it is in the direction of the tangent. This makes it possible to move along a space curve in a
series of infinitesimal steps dr.

r() r(+d)

dr

a

b

r
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Vector calculus
Scalar field
Many scalar quantities have only a single value, e.g. mass of an electron, specific heat of
copper, speed of light. However, the value of a physical quantity may depend upon position
such as the air temperature in a large hall or the height above mean sea level of an area on the
Earth’s surface.

The association of a particular value of a physical quantity with each point in a region of
space is said to constitute a field. When the physical quantity is a scalar, the field is called a
scalar field.

Definition If to each point in a region of space there corresponds a scalar quantity , then
(x,y,z) is known as a scalar field.

Examples Temperature at each point within the Earth’s surface.
Electric potential at every point in an electron optical system.
(x,y,z) = x3y – z2 defines a scalar field.

Representation Scalar fields are best represented as contour
maps in 2 or 3 dimensions.

Vector field
Just as there are scalar fields, there are also vector fields. The velocity of a boat on a river
can be represented by a single vector, but the velocity of the water in the river can not. The
water velocity depends upon where it is measured.

Definition If to each point in a region of space there corresponds a vector quantity V,
then V(x,y,z) is known as a vector field.

Examples Velocity at every point in a moving fluid.
Magnetic field at every point in an electron microscope.
V(x,y,z) = xy2i – 2yz3j + x2zk defines a vector field.

Before deciding on a good representation for a vector
field, let us graph the field V(x,y) = xi + yj.

The magnitude of the vector is 22 yx  , which

corresponds to distance from the origin.

The direction of the vector is 






x
yarctan , which

always points directly away from the origin.

Placing a vector at each point in the diagram clearly
gives a very clumsy picture of the field, although this
is sometimes used.

Representation Since the quantity that distinguishes a vector field from a scalar field is
its direction, it is this which is plotted. This gives a clearer representation than when the
magnitude is plotted as well. Thus, a vector field is most conveniently represented using
field lines.
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Field line A curve whose tangent vector at each point is in the direction of the vector
field at that point is known as a field line. (You may also have used the terms line of force,
stream line or flow line.)

Having introduced fields, we are now going to look at three main measures of field
characteristics which enable us to do many important calculations of field properties.

Gradient of a scalar field
The first of the important field characteristics to be considered is the gradient of a scalar
field.

For a function of a single variable we have gradient
dx

dy


which can be rearranged as dy = gradient × dx

This expression relates the amount by which the function changes,
dy, for a small shift in the value of x, dx.

Now consider a scalar field (x,y,z) and find the change in the value of  for an infinitesimal
vector displacement dl.

Comparison with the above relationship suggests we can write

d = gradient . dl

where it is clear that gradient must be a vector quantity and that a dot product with dl is
required to produce the scalar quantity d.

This is the gradient of the scalar field  and the standard way of writing it is

d = grad. dl

To determine an expression for grad in terms of x, y and z, we can express dl as

dl = dx i + dy j + dz k

and the total differential of  is dz
z

dy
y

dx
x

d


















Putting these into the expression for d requires grad to be

kji
zyx 















grad

Note that  is a scalar field and that grad is a vector field. However, not all vector fields
can be expressed in terms of the gradient of a scalar field in this way.

Since d = grad. dl, the maximum value of d occurs when grad and dl are parallel.
(Remember that a.b = ab cos, which has a maximum when  = 0, i.e. when the vectors are
parallel.) The maximum rate of increase of  is therefore in the direction of grad.

We now have the important results that:

Direction of grad = direction of maximum rate of increase of .

Magnitude of grad = maximum rate of increase of .

x

y



7

Vector differential operator  ‘del’

It is convenient to express the gradient of a scalar field in terms of the vector differential

operator:
zyx 












 kji

Compare with the operator
dx

d
which gives the gradient of f(x).

The gradient of the scalar field (x,y,z) can now be written as

kji
zyx 















grad

Mathematical example

If (x,y,z) = 3x2y – y3z2, find grad at the point (1, -2, -1).

Solution:  2323 zyyx
zyx























 kji

     232232232 333 zyyx
z

zyyx
y

zyyx
x















 kji

  kji zyzyxxy 3222 2336  

This is the gradient of (x,y,z), so at the point (1, -2, -1) we have

kji 16912 

Manipulations of 

Here are some examples of algebraic and differential operations that may be carried out using
the  operator:

    – normal rules of calculus apply

      – the product rule

An example which will be useful later is:

Evaluate 









r

1
where r = x i + y j + z k i.e.   2

1
222 zyxr 

Since r is symmetric in x, y and z, it is sufficient only to determine 












rx

1
:

   
3

2
3

2222
1

222 2
2

11

r

x
xzyxzyx

xrx

















 

We can now use this result to determine the other components of 









r

1
:

3333

1

rr

z

r

y

r

x

r

r
kji 












8

Another example which illustrates the mathematics of the  operator is to evaluate  a.r

where r is defined above and a = a1 i + a2 j + a3 k is a constant:

    akjia.r  321321 aaazayaxa

Directional derivative of a scalar field

At any point in a scalar field , the rate of change of  will depend upon direction. The rate
of change given by  corresponds to the direction and magnitude of the maximum gradient

at that point.

The component of  in the direction of a unit vector n is given by φ.n , which is the

directional derivative of  in the direction of n. It gives the rate of change of  at (x, y, z) in
the direction of n.

It is easily derived as follows: d = grad.dl

Express dl as n dl then d = grad.n dl

So that .n.n 


 grad
dl

d

Physical examples
1. Electric field Work done against an electric field E on moving a unit charge a vector
distance dl is –E.dl. By definition, this is equal to dV, the potential difference between the
ends of the vector dl. (Remember that work done against a field is negative, work done by
the field is positive.)

From the physical definition of potential: dV = – E.dl

For a scalar field , we already have: d = grad.dl

 from the mathematical definition of grad: dV = gradV.dl

Comparison of these expressions gives:

Electric potential, V, is a scalar field and the electric field E, the gradient of V, is the
corresponding vector field. The negative sign in the above expression comes about because
the direction of E is from a region of high potential to one of low potential, but gradV is in
the direction of increasing V.

That the electric field is the negative of the gradient of the electric potential is easily seen in a
one-dimensional example.

For the simple field in the diagram: metre/volts
2

D

V
E 

The slope (gradient) of the graph is
D

V2


So the magnitude and direction of the field is iE
D

V2


Note that kji
z

V

y

V

x

V
V














grad

E = – gradV

E

+V -V

V

D
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For V in volts and x, y, z in metres, the dimensions of gradV must be volts / metre.

2. Heat conduction
Fourier’s first law of heat conduction is:

where Q = quantity of heat/unit time/ unit area flowing in the direction of Q.
k = thermal conductivity
 = temperature

Again, we have an elegant relationship between a scalar field  and a vector field Q. The
negative sign arises because heat flows from high temperature to low, but grad is in the
direction of increasing temperature.

A formula in heat conduction you should already be familiar
with is:

Heat / unit time =
D

areak 21  


This can be seen as Fourier’s law in one dimension.

3. Gravity
From Newton’s law of gravitation, the force exerted on mass

m by mass M is:
2r

mMG
F 

With vectors, this expression is:
3r

mMG r
F 

where the negative sign is necessary since F and r are clearly in opposite directions.

Now gravitational potential is
r

mMG
V 

From previous results, we obtain
3

1
grad

r

mMG

r
mMGV

r











Hence, we have the relationship

and the gravitational force field is minus the gradient of the gravitational potential.

Line integral
Here is a very important calculation on a scalar field.

Consider a particle constrained to move along the line AB in the
force field F.

The line AB is represented by the space curve l(t).

The work done by the field in moving the particle an
infinitesimal distance dl along the line is dW = F.dl

Therefore, the total work done by the field in moving the particle

from A to B is: 
B

A
W F.dl

This is the line integral of F along the curve AB.

Q = – k grad

F = – gradV

M m

r

F

k




D

B

A

l(t)

O

F
dl
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If the integral is performed round a closed path, returning to the starting point, it is written as

CF.dl where C labels the path.

The value of a line integral will normally depend upon the positions of A and B and also
upon the path between them. We will see shortly how line integrals are evaluated.

Conservative field and scalar potential
A special relationship between a scalar and a vector field is that the vector field F is obtained
as the gradient of the scalar field  i.e. F = – grad In this case, F is known as a
conservative field and  is its scalar potential.

An important property of a conservative field, F, is that the line integral of F between any
two points is independent of the path between the points. This is proved as follows:

Work done against the field AB

B

A

BB

A
d    A

grad .dlF.dl

i.e. the work depends only upon the potential difference between the ends of the path.

It is clear from this that the line integral round a closed path in a conservative field must be

zero:  
C

0F.dl for any closed path C, if and only if F = – grad



Examples of conservative fields
A gravitational field is conservative since the gravitational potential (or potential energy) of
an object depends only upon its distance from the centre of the Earth, i.e. work done depends
only upon difference in height and is independent of the path.

Since an electrostatic field is given by E = – gradV, E must be conservative. Work done is a
function only of potential difference between start and end points and not upon the path.

Non-conservative fields
Friction – the direction of the force field is always opposite to the direction of motion, i.e.

  0F.dl

A magnetic field is not conservative since Ampère’s law gives:

 
C

I 0H.dl

A particle taken round a closed loop in the appropriate direction will gain energy and
therefore can do work. This occurs in an electric motor.

Comment
A conservative field is so-called because a particle interacting with a conservative

force field, for example, will have its energy conserved. There is no energy interchange with
the field and the sum of potential and kinetic energy of the particle is constant. You should
already be aware of this for gravitational and electric fields. A consequence of this is that
neither gravitational nor electrostatic motors can exist.

work done in taking a unit
magnetic pole round a closed
loop in a magnetic field

current through
the loop=

H

C

I
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In an electric motor, the electricity is used to produce a magnetic field which is not
conservative and from which energy can be extracted.

The generation of hydroelectricity does not extract energy from the Earth’s
gravitational field – it requires energy from the Sun to provide the water in the upper
reservoir.

Evaluation of line integrals
Line integrals have already been defined. We will see now
how they are evaluated.


B

A
F.dl represents the work done by the force field F in

moving a particle along the line from A to B.

The recipe for evaluating line integrals is as follows. An
actual example will be given in the next section.

1. Obtain an expression for the space curve AB, for example: l(t) = f1(t) i + f2(t) j + f3(t) k

2. Differentiate to obtain dl: dt
dt

df

dt

df

dt

df








 kjidl 321

3. Obtain an expression for the vector field: F(x,y,z) = F1(x,y,z)i + F2(x,y,z)j + F3(x,y,z)k

4. Substitute for x, y, z from 1. to obtain F(t), i.e. x = f1(t), y = f2(t) and z = f3(t). This
makes F a function of t only, which is the value of the force field along the path – it
doesn’t matter what the force field is elsewhere: F(t) = F1(t)i + F2(t)j + F3(t)k

5. Now form F.dl from 2. and 4. dt
dt

df
F

dt

df
F

dt

df
F 








 3

3
2

2
1

1

6. Determine the values of t at the ends of the path: tA, tB

7. Set up the integral:  









B

A

t

t

B

A
dt

dt

df
F

dt

df
F

dt

df
F 3

3
2

2
1

1F.dl

8. Evaluate the integral. It should now be in the form of an ordinary integral in terms of
the single variable, t.

Example

If kjiF 22 2014)63(),,( zxzyyxzyx  , evaluate CF.dl from (0, 0, 0) to (1, 1, 1):

a) along the path x = t, y = t2, z = t3 b) along the straight line joining the points.

Solution: a) If x = t, y = t2, z = t3, then l(t) = t i + t2 j + t3 k
and dl = (i + 2t j + 3t2 k) dt

If kjiF 22 2014)63(),,( zxzyyxzyx 

then field on path is: kjiF 7522 2014)63()( ttttt 

The end points of the path: when t = 0, l(t) = (0, 0, 0) and when t = 1, l(t) = (1, 1, 1)

Set up the integral:     564360289
1

0

1073
1

0

962   tttdtttt
C
F.dl

B

A

l(t)

O

F
dl
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b) The straight line joining (0, 0, 0) to (1, 1, 1) is x = t, y = t, z = t

dttttt )(thatso)( kjidlkjil  also kjiF 322 2014)63()( ttttt 

 
3

13
5

3

11
320116

1

0

1

0

43232 





  tttdtttt

C
F.dl

The value of the integral clearly depends upon the path, so the field F cannot be conservative.

Supplementary example
For the force field F(x,y,z) = -yi + xj + zk, calculate the work done in moving a particle from
(1, 0, 0) to (-1, 0, ) along the following paths:

a) the helix x = cos, y = sin, z = .
b) the straight line joining the points.

Solution: a) If x = cos, y = sin, z = , then l() = cos i + sin j +  k
and dl = (-sin i + cos j + k) d

Field on path: If F(x,y,z) = -yi + xj + zk then F() = -sin i + cos j +  k

Work done: F.dl = (sin2 + cos2 + ) dd

Ends of path: at (1, 0, 0)  = 0 at (-1, 0, )  = 

Line integral: ∫۴Ǥܔ܌ൌ �∫ (ͳ൅ ߠ݀(ߠ
గ

଴
ൌ �ቂߠ൅

ఏమ

ଶ
ቃ
଴

గ

ൌ �ቀͳ൅ߨ�
గ

ଶ
ቁ

b) The straight line through the points a and b is: l() = a + (b – a)

Therefore, the line through (1,0,0) and (-1,0,) is: l() = (1,0,0) + (-2,0,) = (1-2)i + k

so that dl = (-2 i +  k) d

The expression for l() gives x, y and z values of all the points on the path, so we can obtain
an expression for the field on the path: F() = (1 – 2) j +   k

Work done: F.dl = 2 d

Ends of path: at (1, 0, 0)  = 0 at (-1, 0, )  = 

Line integral: ∫۴Ǥܔ܌ൌ �∫ ଶߨߣ
ଵ

଴
ൌߣ݀� ଶ�ቂߨ�

ఒమ

ଶ
ቃ
଴

ଵ

=
గమ

ଶ

Level surfaces

Consider a scalar field  without discontinuities. Connect all points in the region having the
same value of . This will form a surface known as a level surface. It is the three-
dimensional equivalent of a contour line in two-dimensions.

Let dl0 lie within a level surface, then the difference in the value
of , d, between the ends of the vector dl0 is zero.

But we have already d = grad . dl

so that 0 = grad . dl0

grad

dl0

1



13

In general, neither grad nor dl0 will be the null vector, so the dot product requires grad and
dl0 to be perpendicular, i.e. grad is normal to the level surface.

Mathematical consequence

(x, y, z) = constant defines a surface in three-dimensional space – a level surface.

 is always normal to this surface.

Physical consequence
Consider an equipotential surface V(x, y, z) = V0 in an electric field E. Since E = – gradV, the
field vector must be normal to the equipotential surface.

The surface of a static liquid is a surface of equal gravitational potential. The direction of the
gravitational field is therefore normal to this surface.

The steepest way uphill is perpendicular to the contours.

In a heated body, level surfaces of temperature are called isotherms. The direction of heat
flow is always normal to the isotherms.

Vector area
A concept which is essential to the understanding of the properties of fields is that of vector
area. It is not immediately obvious that areas can be represented mathematically as vectors,
but it is easy to demonstrate. We start with the definition.

If the vector S represents a plane area then:

The magnitude of the vector gives the size of the area.

The direction of the vector is normal to the plane of the
area.

The vector contains no information about the shape of the area.

To demonstrate that an area can behave as a vector quantity, consider a hollow cube filled
with a gas at a pressure P. Let the area of each face of the cube be A. The force on each face
due to the internal pressure will therefore be given by:

F = P A

However, force is a vector quantity and the direction of the
force will be normal to the face. The quantity PA must
therefore also be a vector normal to the face of the cube. Since
pressure is a scalar, we must conclude that A is a vector
parallel to F, so we can write:

F = P A

If the area is on a curved surface, we can take part of the area small
enough to be regarded as a plane and represent the small area by
the infinitesimal vector dS.

S

F

dS
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Flux
An important measure of a vector field is its flux. Consider a
fluid moving with a velocity given by the vector field F(x, y, z).
Its rate of flow (volume / time) may be obtained by observing its
velocity through an area represented by the vector S:

flow rate = speed × area = |F| × |S|

If the area is reoriented so that F and S are orthogonal, no fluid
will pass through the area, so the measured flow rate will be zero:

flow rate = 0

A more general case is afforded by orienting the area so there
is an angle  between F and S. The area presented to the flow
is now |S| cos

flow rate = |F| × |S| cos

All of these results can be obtained as the dot product of the two vectors involved:

i.e. flow rate = F . S

Not all vector fields correspond to a flowing substance (very few do), yet the same
measurement can be made on any vector field. Instead of calling it flow rate (because
nothing may be flowing) a generic term is used, i.e. flux. Flux is simply the Latin for flow.
We can therefore refer to the flux of an electric or gravitational field and measure it as F.S.

It is more useful to measure flux at a point in a field and this is done using an infinitesimal
area dS, i.e. flux at a point = F . dS.


Calculation of dS for any surface
Calculations of flux require a value of dS, the element of vector area. The easiest way of
achieving this is to express the equation of the surface in parametric form such that r(, )
gives the position vector of a point on the surface for any , .

The vector () → (+d, ) lies in the surface and is 


d


r

The vector () → (+d) lies in the surface and is 


d


r

These vectors define an element of area given by




dd










rr
dS

Remember that the magnitude of a cross product gives the area of the parallelogram defined
by the two vectors and that the direction of the cross product is normal to the plane of the
vectors.

SF

S
F

F

S



(, ) (+d, )

(+d)




d


r







r
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Example – cylindrical surface

Cylindrical polar coordinates are defined by: x = r cos; y = r sin; z = z.
A point on a cylinder of radius a is therefore: x = a cos; y = a sin; z = z.

This makes the position vector of the point: kjir zaaz   sincos),(

dzdaadzd
z




100

0cossin










kji
rr

dS

    dzdadzdaa  jiji sincossincos 

This is a unit vector normal to the surface multiplied by the
scalar a d dz. This is seen to be the magnitude of dS from the
diagram.

Example – spherical surface

Spherical polar coordinates are defined by: x = r cos sin; y = r sin sin; z = r cos
A point on a sphere of radius a is therefore: x = a cos sin; y = a sin sin; z = a cos

This makes the position vector of the point: kjir  cossinsincossin),( aaa 








dd

aa

aaadd

0cossinsinsin

sinsincoscoscos














kji
rr

dS

   dda kji cossinsincossinsin2 

This is a unit vector normal to the spherical surface multiplied by a2

sin d d, which is seen to be the magnitude of dS from the diagram.

Surface integral
The calculation of flux normally involves the use of a surface
integral.

Consider a surface S in a vector field F(x, y, z). Let dS be an
element of area on S such that dS is always normal to the
surface. By convention, dS points outwards if S is a closed
surface.

The flux of F through dS is F . dS

Therefore, total flux through S 
S

dS.F

where the integral is taken over the whole surface S. This is a surface integral. Note that it
is a double integral.

Since dS = n dS where n is a unit vector, the surface integral can be written as 
S

dSn.F

which is the integral of the normal component of F over the surface.

dz

a da

dz

S

dS
F

ad





asind

a

z

y

x
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A surface integral may sometimes be written as 
S

dS.F but it is still a double integral.

If the integral is over a closed surface, it may be written as 
SS

dS.FdS.F or

Evaluation of a surface integral
The evaluation of a surface integral is carried out in the same way as a line integral, except
there are now two variables instead of one.

Example: Evaluate the surface integral 
S

dS.F where kjiF zyxzzyx 23),,(  and S is

the curved surface of the cylinder x2 + y2 = 16 in the first octant between z = 0 and z = 2.

Solution: The equation of the curved surface of a cylinder is  zz ,sin4,cos4),(  r

From previous results, dzdzd
z




)0,sin,(cos4










rr
dS

On the surface of the cylinder, x = 4 cos and y = 4 sin. Substitute these into the expression
for F(x, y, z) to obtain the value of F on the surface:

kjiF zzz 2)sin4(3cos4),(  

Now form F . dS:   dzdz  sincos4cos4 dS.F

The surface integral is therefore  



2

0

2

0

cossin4cos4
zS

dzdz 





dS.F

 
2

0

2

0

2

0

2

0

2sin8cos4 dzddzzd





    242.
2

1

2

1
.82.1.42cos

2

1
8

2

1
sin4

2
0

2

0

2

0

22
0 


























 zz






Supplementary example: Evaluate the surface integral 
S

dS.F where F(x,y,z) = yi + xj + zk

and S is the hemispherical surface x2 + y2 + z2 = 4, z ≥ 0. 

Solution: The equation of a spherical surface of radius a, centred on the origin is

(߶ǡߠ)ܚ ൌ �ܽ�ሺߠ��������߶ǡߠ�������߶ǡ�ሻߠ��

From previous results, ൌ܁܌ �
డܚ

డఏ
×

డܚ

డథ
߶݀�ߠ݀� ൌ �ܽ ଶߠ���)ߠ�������߶ǡߠ�������߶ǡ�߶݀�ߠ݀(ߠ��

From r() with a = 2, x = 2 sin cos, y = 2 sin sin, z = 2 cosSubstitute these into
the expression for F(x,y,z) to obtain the value of F on the surface:

F(,) = (2 sin sin, 2 sin cos, 2 cos)

Measure of flux: F.dS = 4 sin (2 sin2 sin cos + 2 sin2 sin cos + 2 cos2) d d

   sin (sin2 sin2 + cos2) d d
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Surface integral: ∬ ۴Ǥ܁܌ൌ ͺ∫
గ
ଶൗ

ఏୀ଴
∫ �ሺ���ଶߠ���
ଶగ

థୀ଴ௌ
ʹ����ߠ ߶ ൅ ���ଶߠሻ�݀݀�ߠ߶

= 8 ∫ sinଷ
గ
ଶൗ

଴
∫ߠ݀�ߠ ���ʹ ߶�݀߶

ଶగ

଴
+ 8 ∫ ��ߠ�����ଶ

గ
ଶൗ

଴
∫ߠ݀�ߠ ݀߶

ଶగ

଴

The first double integral is zero – integration of a whole number of sin waves over 2.

The second double integral is evaluated using the substitution u = cosso that du = -sin d

∴  ∬ ۴Ǥ܁܌ൌ �െ �ͅ∫ ଶݑ
଴

ଵௌ
∫�ݑ݀ ݀߶

ଶగ

଴
= 8 ×

ଵ

ଷ
ൈ ʹ ߨ ൌ �

ଵ଺

ଷ
ߨ

Volume integral
After line and surface integrals come volume integrals. However, these are just ordinary
triple integrals and don’t need any special tricks for their evaluation. An example of a

volume integral is 
V

dV where the field of integration is a volume.

If  is charge density, then dV is the charge contained in the volume dV. The integral will
therefore measure the total charge in the volume V.

The concept of divergence of a vector field
The second important characteristic after the gradient of a scalar field is the divergence of a
vector field.

Enclose a volume V in the vector field F(x, y, z) by an arbitrary closed surface S. The total

outward flux of F through S is given by 
S

F.dS . Now consider the following:

The field inside S is continuous, i.e. there are no sources or sinks.
What goes in also comes out, so the inward flux is equal to the

outward flux making 0
S

dS.F

A source of the field inside S gives a net outward flux through the

surface, making 0
S

dS.F

There is a sink of the field (a sink is the opposite of a source) inside S.

This gives a net inward flux through the surface so that 0
S

dS.F

It is clear that the surface integral can be used as a detector of sources or sinks of the field. It
gives a measure of the total strength of sources (i.e. sources – sinks) inside S.

For distributed sources, a more useful measure is the source strength per unit volume given

by 
S

V
dS.F

1
where V is the volume enclosed by S.
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It is even more useful to pin-point the sources and sinks. This is done by shrinking the
volume V to the point where the surface S encloses an infinitesimal volume dV. This will
give a measure of flux / unit volume diverging from a point. We therefore define the
divergence of the field as




S
VV

dS.FF
1

0

lim
div where V is the volume enclosed by the surface S.

The limit is finite and independent of the shape of the volume element V.

Note that divF defines a scalar field.

An expression for the divergence of a vector field
Consider the elementary rectangular volume ABCDEFGH whose edges are parallel to the
coordinate axes and of lengths x, y, z.

The volume is centred on the point (x, y, z) in the vector field F(x, y, z) = F1 i + F2 j + F3 k

Assume that x, y and z are small enough to approximate the value of the field F over
each face of the box by the value at the mid point of the face.

Now evaluate the surface integral 
S

dS.F over the surface of

the box by calculating the flux through each face separately.

For the face EFGH:   






 







2
11

x
zyF

x
zyFdS.F

This comes from:

For the face ABCD:   






 







2
11

x
zyF

x
zyFdS.F

Adding these gives the total outward flux in the x-direction as zyx
x

F




 1

Similarly, the total outward flux in the y-direction is zyx
y

F




 2

and in the z-direction it is zyx
z

F




 3

The value of the surface integral over the whole surface is the sum of these:

zyx
z

F

y

F

x

F

S























 

321dS.F

The volume of the box = V = x y z

 

















S
z

F

y

F

x

F

VV
3211

0

lim
div dS.FF

Divergence can be expressed in terms of the vector differential operator . Consider:

G

B

H
E

x

z

A D

C

F

y

y
x

z

B

change of F.dS upon
moving to the front face

F.dS at the
mid plane

+
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  Fkji.kjiF. div321
321 







































z

F

y

F

x

F
FFF

zyx

Mathematical examples
Refer back to the vector field V(x, y) = x i + y j that was sketched in the first lecture.
Imagine that it represents the velocity of flowing water. The flow rate near the origin is small,
but the vectors further away from the origin show that the flow rate must increase as distance
from the origin increases. Where does the extra water come from? The divergence of the
field detects the sources and sinks of the field, so a calculation of the divergence should
answer this question:

  211div 
















 ji.jiV.V yx

yx

There is positive divergence everywhere (independent of x and y) so there must be a source of
water of the same strength over the whole field to produce this particular flow pattern.

A more adventurous example of the calculation of divergence is:

    zyyxzyyxzyzyyxzyxzyyxzyx 524222div 2222  kji.kji

The normal rules of calculus apply when manipulating expressions involving  :

  B.A.BA.  - the derivative of a sum is the sum of derivatives.

     A.A.A.   - the product rule. Since divergence is a scalar quantity, the

terms on the right hand side must also be scalars and this dictates where the dot operators
should be.

Before we consider applications of divergence to physics, we must first look at a very
important theorem.

The divergence theorem
Consider a finite volume V bounded by a simple closed surface S in a vector field F.

Total flux through the surface 
S

dS.F

Now, from the definition of divergence: 
'

1
div

S
dV

dS'.FF where S’ bounds dV

the flux diverging from the volume element dV = divF dV

Therefore, the total flux diverging from V = 
V

dVFdiv

However, flux diverging from V = flux through S

 
V S

dV dS.FFdiv where the surface S is the boundary of the volume V

This is the divergence theorem, which can be expressed in words as:

The surface integral of the normal component of a vector field F taken over a simple closed
surface S is equal to the volume integral of the divergence of F taken over the volume
bounded by S.
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Definition: A simple closed surface can be deformed continuously into a sphere without
intersecting itself. Therefore, a torus (the shape of a ring) is not a simple closed surface.

Comment: Mathematically, this relationship between a volume and a surface integral can
be used to evaluate either by converting one to the other. However, its importance in physics
is immense as we shall soon see.

Electric field
Gauss’s law of electrostatics states that:

Total electric flux
through a closed surface

= Total electric charge
enclosed by the surface

 
VS

dV
 0

1
dS.E

where  = charge density (coulombs / metre3)
and 0 = permittivity of free space = 8.85 × 10-12 farad / metre

From the divergence theorem:  
VS

dVEdS.E div

Equate the two volume integrals:  
VV

dVdV 
 0

1
divE

Since the volume is arbitrary, the integrands must be equal, so we have:

0
div


E

and this is the differential form of Gauss’s law.

Since divergence detects and locates the sources and sinks of
a field, we see from Gauss’s law that the sources of an
electric field are electric charges. These are the places where
the field lines begin and end, as seen in the sketch of a very
simple electric field. Divergence is positive at positive
charges and negative at negative charges. Elsewhere, where
the field lines are continuous, the divergence is zero.

It is instructive to examine the dimensions of the three integrals in the above analysis:

  
V SV

dVdV dS.EEdiv
1

0




Their dimensions must all be the same to make physical sense. Let [x] mean the dimensions
of x, then we have:

1st integral:    metresvolt











farad

metrecoulomb

farad

metre
metre

metre

coulomb
dV 3

3
0

1




Note that
volts

coulombs
farads  , which comes from the formula for capacitance

V

Q
C 
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2nd integral:    metresvoltE  3

2
div metre

metre

volts
dV

Note that [E] = V / m, but since
z

E

y

E

x

E














 321divE , [divE] = V / m2.

3rd integral:    metresvoltdSE  2metres
metres

volts

Magnetic field
In regions where single magnetic poles do not exist
(which is everywhere) the divergence of a magnetic field,
H, must be zero. We can therefore write divH = 0, i.e.
the field lines are continuous and do not begin or end
anywhere. This can be seen in the magnetic field in the
diagram.

Any vector field for which divF = 0 everywhere is
called solenoidal.

[Electric fields are conservative whereas magnetic fields are solenoidal.]

The Laplace operator
We have seen that an electric field, E, is given by E = -gradV

From Gauss’s law we also have
0

div



E

Eliminate E to give
0

graddiv



V

This result requires that the scalar field V be differentiated twice. The differential operator is:

2

2

2

2

2

2
2graddiv

zyxzyxzyx 

























































 kji.kji.

and this is the Laplace operator, usually written as 2 . The above equation may now be

rewritten as
0

2




 V which is known as Poisson’s equation.

In regions where there are no free charges, the equation is reduced to

which is Laplace’s equation.

Laplace’s equation is one of the most fundamental equations in mathematical physics. It is a
second order partial differential equation, having applications in electrostatics, magnetostatics,
hydrodynamics, heat flow and many other fields. Its solution is the scalar field V(x, y, z).
You will learn how to solve it in a subsequent maths course.

The concept of curl of a vector field
The third of the important field characteristics (after grad and div) that we need to know is
called curl.

02  V

N S

Bar magnet
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Recall that the value of the line integral round any closed loop in a conservative field is

always zero, i.e. gradif0  Fdl.F

A zero value for this integral is rather special, indicating that the field is special, i.e. it is
conservative. In general, this integral will not vanish and its value measures an important
property of the vector field. Consider the following.

Take a plane loop in a vector field, F, as shown. To keep
things easy, let the direction of F be everywhere the same,
but allow the magnitude to vary as in the diagram. We will
now evaluate the line integral of F.dl around the loop. With
the normal to the loop at right angles to the field, the value
of F.dl will be zero on the vertical sides, large and negative
on the top side and small and positive on the bottom side.
The sum of these is certainly not zero.

In the second diagram, the loop has been reoriented so its
normal is now parallel to F. The value of F.dl on all four
sides of the loop is now zero. Clearly the value of the line
integral depends upon the orientation of the loop. This
makes it a function of the vector n, the normal to the loop,
so it has the property of a vector.

If F is a force field, the quantity measured by the line integral is work done by the field.
However, the same measure can be made on any vector field, whether it is a force field or not.
The generic name for the quantity measured is circulation. It is more meaningful to refer
circulation to the area of the loop and circulation per unit area is the curl of the field. We
measure circulation at a point by shrinking the loop to a point and define the curl of the field
by the formula:




 CSS
dl.FF.n

1lim
curl

0
where the curve C is the boundary of the area S

This expression gives the component of curlF in the direction of the unit vector n which is
normal to the plane of the curve C. Clearly, curlF is a vector field.

Sign convention: the direction of circulation round the loop and the direction of the normal
to the loop form a right-handed screw.

The curl of a vector field will be non-zero wherever the field possesses shear (as in the
diagrams above) and certain kinds of rotation. We will examine this more closely when we
consider applications in physics.

Curl of a vector field in Cartesian coordinates
We will derive an expression for the curl of a vector field

by evaluating the line integral  Czy
dl.F

1
round the

closed loop ABCD in the vector field F = F1i + F2j + F3k.
The sides of the loop are parallel to the coordinate axes and
are of lengths y and z.

The sign convention means that for the direction of
circulation shown, the integral will evaluate the positive x-

F

F

y

z
z

y

x

A B

CD
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component of curlF.

The centre of the elementary loop ABCD is at (x, y, z).

Assume y and z are both small enough so the value of the vector field along each line can
be approximated by its value at the mid point of the line.

Now   
A

D

D

C

C

B

B

A
dl.Fdl.Fdl.Fdl.Fdl.F
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 the x-component of curlF =  







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F

zy
231

dl.F

This expression can be used as a pattern to obtain the other components of curlF giving:

kjiF 

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F 123123curl

Just as grad and div can be expressed using the  operator, curl can too. Consider

Fkji

kji

F curl123123
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We now have a complete set of field characteristics:

FF

F.F







curl

div

grad 

field)(vector

field)(scalar

)fieldvector(

As before, the normal rules of calculus apply:

  BABA  - the derivative of a sum is the sum of derivatives.

  AAA   - the product rule. Note that the cross operator always results

in the right hand side terms being vectors.

Conservative field revisited: Since curlF is measured by  dl.F and   0dl.F for

all closed paths in a conservative field, then a conservative field must have curlF = 0
everywhere. This is the easiest test for a conservative field.

Note that we now have:
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Mathematical example
If A = x2y i – 2xz j + 2yz k, find curl curlA.

Solution: Because curlA is a vector field, its curl can also be determined, so the field is
differentiated twice:

curl curlA =     j
kjikji

A x

xzxz

zyx

yzxzyx

zyx
22

202222 22

























Rigid body rotation
The first of our physical examples examines a rotating field to see
what its value of curl is. The system considered is a rotating disc.
The linear velocity of each point on the disc constitutes a vector field
and the linear velocity is given by

rωv 

where  is the angular velocity, which points along the axis of
rotation, and r is the position vector of a point on the disc

Let us now obtain an expression for the curl of v. Define  as (1, 2, 3) and r as (x, y, z):

xyzxyz
zyx

zyx
211332

321)(curl
















kjikji

rωv

      ωkji 2332211  

This shows that the circulation is constant over the whole field v (its value is independent of
position).

Comment: Perhaps it is no surprise that a rotating system has lots of circulation and
therefore a non-zero value of curl. However, before jumping to conclusions, let us examine
another rotating system in the same way.

The field lines of v for the rotating disc are concentric circles. A field
with virtually the same lines is the velocity of water flowing down a
plug-hole. The field lines cannot be exactly concentric circles, but they
can be very close, so we will assume they are to simplify the
mathematics. It will be instructive to compare the two fields.

Water down a plug-hole
As before, we will determine the curl of the linear velocity field. First of all we need to
determine how the water moves - it doesn’t behave as a rigid body like the rotating disc.

Consider a small parcel of water of mass m at radius r with angular velocity .

conservative field has curlF = 0

solenoidal field has divF = 0



r
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Angular momentum about the centre of the field = moment of inertia × angular velocity = I

Ignoring viscosity and friction, angular momentum is constant.

2

2 constant
givingconstant

rm
rmI  

This makes the linear velocity
rm

r
rm

rv
constantconstant

2
  that is,

r
v

1


A vector field whose field lines are concentric circles and whose magnitude is 1/r is:

22 yx

xy






ji
v

We can now calculate curlv as
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Comment: This result of obtaining zero curl for a whirlpool may be surprising if we had
tried to predict the result. What is it telling us about the flow of water? What is the essential
difference between this and the rotating disc?

If we place a marker on the rotating disc, it will be
carried around a field line, i.e. it will interact with the field,
changing orientation as it goes. It will complete one rotation for
each revolution of the disc. This is obvious.

If we float a cork on the whirlpool, it will also interact
with the field, but how will its orientation change? This is not
so obvious and we really need to do the experiment. The OU
video of this (shown as part of the course) shows that the
orientation of the cork does not change as it is carried around by
the field. This lack of rotation is what is predicted by the zero
curl.

Curl is seen to be a measure of that property of a vector
field which will change the orientation of an object interacting
with the field.

The axis of rotation is the direction of curl.

The speed of rotation is measured by the magnitude of curl.

Just as the concept of divergence gave rise to the very important
divergence theorem, there is an equally important theorem
involving curl – Stokes’s theorem.

Rigid disc: rv 

Whirlpool:
r

v 1
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Stokes’s theorem
Consider a surface S bounded by a closed curve C in a vector
field F.

Consider also an element of area ABCD on S and its adjacent
element ADEF, enlarged in the lower diagram.

For ABCD: dl.Fdl.F 






  
A

D

D

C

C

B

B

A
ABCD

and for ADEF: dl.Fdl.F 






  
D

A

A

F
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E

E

D
ADEF

But  
D

A

A

D
dl.Fdl.F

Therefore  






 















ABCDEF

A

F

F

E

E

D

D

C

C

B

B

A
ADEFABCD

dl.Fdl.Fdl.F

which is around the boundary of the combined area.

From the definition of curl: ����۴Ǥܖ ൌ �
ଵ

ௗௌ
∮۴Ǥܔ܌

so that  dl.FdS.Fcurl where the line integral is round the boundary of dS.

Integration of this expression over the whole surface S is achieved by adding up the
contributions of adjacent elements of area. As each new element is added, the line integral on
the right is always round the boundary of the combined area as seen in the above analysis.
The final result is therefore:

This is Stokes’s theorem which can be expressed in words as:

The line integral of the tangential component of a vector field F taken round a simple closed
curve C is equal to the surface integral of the normal component of the curl of F taken over
any surface having C as its boundary.

Definition: A simple closed curve can be continuously reduced to a point without
intersecting itself, i.e. it doesn’t form a knot.

Comment: Mathematically, this relationship between a surface and a line integral can be
used to evaluate either by converting one to the other. However, it is an extremely important
theorem of immense use in physics as we shall soon see.

Summary of integral relationships
We now have a set of three quite remarkable integral relationships and it is worth looking at
them all together:

Divergence theorem:  
S

dV dS.FF
V

div where surface S is the boundary of volume V.

 
C

dl.FdS.F
S

curl where C is the boundary of S.

dS

S

C

C D E

B A F
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Stokes’s theorem:  
C

dl.FdS.F
S

curl where curve C is the boundary of surface S.

Conservative field: AB

B

A

  dl.grad where A and B are the ends of a defined curve.

They involve the three major field characteristics – grad, div and curl – that we have been
considering. In each case, the expression on the right involves only the boundary of the field
of integration on the left. The left-hand-side integrals can therefore be evaluated without
knowing the detailed behaviour of the field inside the boundary.

Ampère’s law
Ampère’s law for a steady current relates the magnetic field around a
current-carrying conductor to the electric current flowing along the
conductor:

I
C

H.dl

Be careful about the physical dimensions in this expression. Note that:

B = 0 H in vacuo H = magnetising force ampere / metre
B = magnetic induction weber / metre2

0 = permeability of free space = 4×10-7 henry / metre

From Stokes’s theorem: ∮ ۶Ǥܔ܌ൌ �∬ ����۶Ǥ܁܌
஼܁

where S is any surface having C as

its boundary.

Now express the current in terms of current density J, measured in amps / m2, i.e. current
flowing through unit area. The vector direction gives the direction of flow of the current.

We find that: 
S

I dS.J where the surface integral is over the same surface

S as in Stokes’s theorem, i.e. flux of J = current.

Substitute for I from Ampère’s law and make use of Stokes’s theorem to give

∴ ∮ ۶Ǥܔ܌ൌ �∬ ۸Ǥ܁܌
௖܁

so that  
S

dS.JdS.H
S

curl

Since the surface S is arbitrary, the integrands must be equal, so that:

curlH = J

and this is the differential form of Ampère’s law.

Grad in spherical polar coordinates
So far, we have always used Cartesian coordinates to develop expressions for curl, div, grad

and 2 . However, it is useful to have the equivalent expressions in cylindrical and spherical
polar coordinates as well.

Consider a scalar field f(r, , ).

Circulation of magnetic
field round a closed loop

= current through loop

H

I



28

We already know that df = gradf . dl

The total differential of f is: 





d
f

d
f

dr
r

f
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From the diagram: φθrdl ˆsinˆˆ  drdrdr 

where φθr ˆ,ˆ,ˆ are dimensionless unit vectors in the directions of

increasing r, ,  respectively, so that

0ˆ.ˆˆˆˆˆ,1ˆ.ˆˆ.ˆˆˆ  φθφ.rθ.rφφθθr.r

Let φθr ˆˆˆgrad  AAAf r 

Then       drAdrAdrAdrdrdrAAAf rr sinˆsinˆˆˆˆˆ.grad  φθr.φθrdl

Comparing terms in df and gradf . dl gives:
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Div in spherical polar coordinates
Consider an elementary volume ABCDEFGH centred
around the point (r, , ) in the vector field

φθrF ˆˆˆ),,(  FFFr r 

Assume that r,  are all small enough so the
field F on each face of ABCDEFGH can be
approximated by its value at the mid point.

To determine divF, use 


S
VV

dS.FF
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where S is the surface of V.
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Elementary volume V = r2 sinr 
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The Laplacian operator in spherical polar coordinates
The Laplacian operator, 2 , is given by div grad and we have just developed expressions
for both grad and div above.
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Comment: You are not expected to remember complicated expressions like these. You are

given the complete set of expressions for grad, div, curl and 2 in Cartesians, spherical and
cylindrical polars in the formula book in exams. However, you are expected to be able to use
them. You will come across them again in physics courses.
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GRAD, DIV, CURL AND 2 IN DIFFERENT
COORDINATE SYSTEMS

Cartesian coordinates Cylindrical polar coordinates
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The continuity equation
We will now bring in time as an extra variable. Most things move or change with time and
we have to be able to deal with that.

Consider a substance of density (x, y, z, t) with a flow rate (flux) given by J(x, y, z, t) as
amount of substance / unit area / unit time.

Consider also an arbitrary volume V bounded by the closed surface S.

Total amount of substance in V = 
V

dV

 rate of increase of substance in V = 



V

dV
t



Assuming  to be continuous in V with respect to space and time, we can reverse the order of

operations so that  








VV
tt

 rate of increase of substance in V =  


V

dV
t



Now measure the same quantity in a different way and equate the two results.

Amount of substance flowing through element of area on S in unit time = J . dS

Because dS points outwards, this measures amount of substance lost from V.

 rate of decrease of substance from V = 
S

dS.J

But, from the divergence theorem  
VS

dVJdS.J div

 rate of decrease of substance in V = 
V

dVJdiv

If there are no sources or sinks in V, these two results must be the same. We therefore have

 




VV

dVdV
t

Jdiv


Since V is arbitrary, the integrands must be equal. This gives the continuity equation as:

0div 





t


J

Examples
1. Fluid (gas or liquid)

J = v with dimensions mass /unit area / unit time [divJ] = mass / vol / time

where v = velocity

and  = density  t = mass / vol / time



32

If  increases at a point making 0 t , this can only be achieved by a net flow of fluid

towards the point making divJ < 0 such that 0div  tJ .

If the fluid is incompressible, then 0 t so that divJ = 0. This means that divv = 0 and

v must therefore be a solenoidal field.

2. Electricity

J = current density (coulombs / area / time) [divJ] = coulombs / vol / time

 = charge density (coulombs / vol)  t = coulombs / vol / time

A build-up of charge at a point, making 0 t , is only possible by a net flow of charge

towards the point, making divJ < 0 such that 0div  tJ .

In a good electrical conductor, there can be no build-up of charge. This means that 0 t

so that divJ = 0 and J is solenoidal.

3. Heat

J = heat flow (quantity of heat / area / time) [divJ] = heat / vol / time

 = heat density = quantity of heat / vol  t = heat / vol / time

=
vol

etemperaturheatspecificmass 

= density of heat conductor × specific heat × temperature

The more usual symbols used for heat are:

Q = heat flow;  = density of conductor;  = specific heat;  = temperature

Assuming  and  to be constant with time, the continuity equation for heat becomes:

0div 





t


Q

The temperature can only decrease  0 t by a net flow of heat away, i.e. divQ > 0 such

that 0div  tQ .

In steady state heat conduction, the temperature will be constant with time so that 0 t

giving divQ = 0 and Q must be solenoidal.

Heat conduction equation
We have already seen that heat conduction is described by Fourier’s first law of heat
conduction: Q = - k grad where k is thermal conductivity

Therefore divQ = - k div grad = 2 k

But from the continuity equation
t





Qdiv

Eliminating divQ gives the heat conduction equation

This is also known as Fourier’s second law of heat conduction.

tk 





2
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The quantity


k
is known as the thermal diffusivity.

For steady state heat conduction, 0 t then

Diffusion equation
The heat conduction equation will also describe the more general process of diffusion, as heat
conduction is a particular example of diffusion.

The diffusion coefficient of a substance is defined by:

flow rate = - diffusion coefficient × concentration gradient

This is described by the equation c v = - D gradc

where c = concentration (mass / vol) and v = velocity (m / s)

This makes the dimensions of the diffusion coefficient, D, = area / time

Take the divergence of both sides of the above equation to get:

cDcDc 2graddiv)(div v

But the continuity equation gives 0)(div 





t

c
c v

Eliminating div(cv) gives the diffusion equation

Some partial differential equations of physics
We can now write down and compare three very important partial differential equations in
mathematical physics:

Laplace’s equation
This equation has applications in electricity, magnetism, gravitation and steady-
state heat flow among many others. The scalar field  may be electric potential,
gravitational potential, temperature etc., depending upon the application.

Laplace (1749-1827) used it to study the gravitational attraction of extended masses.

Diffusion equation
The obvious applications are in heat conduction and diffusion.
The diffusion coefficient, D, becomes k /  for heat flow.

The scalar field  may be concentration, temperature, partial pressure, depending upon the
application.
Joseph Fourier (1768-1830) developed Fourier series as a means of solving it. We will come
across Fourier series later this term.

Wave equation
You will have encountered the wave equation in your waves course in the first year. It

02  

t

c

D
c






12

02  

tD 






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describes the behaviour of all waves that propagate at constant speed and
constant profile, i.e. they do not change shape as they travel.
The field  may be displacement, pressure, electric field, magnetic field
etc. depending upon the nature of the wave (sound wave, electromagnetic wave etc.).
v is the speed of propagation.

Useful relationships
We have already seen a number of vector relationships that give the grad, div or curl of sums
and products of fields. A more complete list is available in exams if you need to use them,
but they will also be given in exam questions as appropriate. Four more relationships are
presented here which are both useful and interesting. They all involve second order
derivatives.

1. curl grad = 0 grad produces a conservative field, where  is the scalar potential of
that field, and the curl of a conservative field is everywhere zero.

2. div curlF = 0 We know that the divergence of a solenoidal field is zero. It is clear,
therefore, that curlF produces a solenoidal field and F is known as the vector potential of
that field.

Proof of the relationship is accomplished by expanding the field into its Cartesian
components, i.e. F = F1i + F2j + F3k so that
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3. div grad = φ2 This produces the Laplace operator.

4.     FdivFgradF.FFcurlFcurl 22  This is one of the more

famous vector relationships as we shall soon see. It will be used in one of the most
remarkable pieces of mathematical physics ever and will form a suitable climax to this course.

To prove this relationship, use the standard relationship for dealing with vector triple
products, i.e. a×(b×c) = (a.c) b – (a.b) c

Let a = b =  and c = F. However, since  is an operator, the order of terms on the right-
hand-side becomes important. If we rewrite the relationship as a×(b×c) = b (a.c) – (a.b) c
so the operators come first in each term, we can see that this is exactly the relationship we
wish to prove.

Ampère’s law revisited
We have already derived the differential form of Ampère’s law for steady currents, curlH = J

This does not allow variations of J with time because div curlH = divJ

But div curlA = 0 for any differentiable vector field A, making divJ = 0

However, the continuity equation gives 0div 





t


J so that

t





Jdiv
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There is clearly a time-dependent term missing from Ampère’s law, but we can find it by
making it consistent with the continuity equation.

Substitute for  in the continuity equation from Gauss’s law divE =  / 0, i.e.  = 0 divE

The continuity equation becomes   0divdiv 0 



 EJ 

t

Changing the order of the differential operators gives

0divdivdiv 00 




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



















tt

E
J

E
J 

It would appear, then, that J in Ampère’s law should be replaced by
t




E
J 0 to allow for

time variations.

Therefore, Ampère’s law becomes

Faraday’s law of electromagnetic induction
Faraday’s law states that:

voltage round loop = - rate of change of magnetic
flux through loop

Expressing this mathematically gives:

 




SC
t

H.dSE.dl 0 where C is the loop in the

diagram and S is a surface with C as its boundary.

By Stokes’s theorem:  
SC

E.dSE.dl curl
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SSS
tt

dS
H

H.dSE.dS .curl 00 

Since the surface S is arbitrary, the integrands must be equal. This gives the differential form
of Faraday’s law as:

t


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H
E 0curl 

Just to make sure that the physical dimensions are correct, we see that [E] = V / m so that
[curlE] = V / m2.

Also, 0 = permeability of free space = 4 × 10-7 henrys / metre and henry = volt sec / amp

H = magnetising force measured in amp / metre so that 2
0 / mV
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Note that B = 0 H = magnetic induction measured in weber / metre2.
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Maxwell’s equations
Let us now assemble the various laws of electricity and magnetism that we have encountered
in their differential forms:

Gauss’s law of electrostatics divE =  / 0

Gauss’s law of magnetostatics divH = 0

Faraday’s law
t




H
E 0curl 

Ampère’s law
t




E
JH 0curl 

These are known as Maxwell’s equations.

We will use them in their simplest possible form which is in free space where  = 0 and J = 0.
The equations are now expressed as:

divE = 0 _____ (1)
t




H
E 0curl  _____ (3)

divH = 0 _____ (2)
t




E
H 0curl  _____ (4)

Now use the vector identity: EEE 2divgradcurlcurl 

and rearrange it as: EEE curlcurldivgrad2 

Using equations (1) and (3):  H
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Similarly, we can obtain:
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These are of the same mathematical form as the wave equation
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Amazingly, we have discovered waves in electric and magnetic fields (actually, Maxwell got

there first), which propagate at a speed of 001  m / s.

With 0 = 4 × 10-7 henrys / metre and 0 = 8.85419 × 10-12 farads / metre, we find that the
speed of the waves is 2.99792 × 108 m / s, a number which you ought to recognise as the
speed of light. Mathematical physics doesn’t come any better than this!

I hope you have enjoyed the course.


