Veetor Caleylus

14 lectures given in the autumn term to second year physicists as part of the
Maths |1 course

Lecturer: Professor Peter Main

About the course

As the name implies, vector calculus is a combination of vector agebraand calculus. Itisan
elegant branch of mathematics that is extremely useful to physicists as it is the mathematics
of fields. You will already have encountered electric, magnetic and gravitational fields, but
you are soon to come across many more. Vector calculus gives you the mathematical tools to
manipulate fields, to do calculations involving fields, to describe their properties and to
characterise them precisely. It isan important branch of mathematical physics.

Aswe live in a three-dimensional world, the variables we will deal with are x, y, z, i.e. three-
dimensional space. Towards the end of the course, time will be introduced as an extra
variable — not everything stands still and we need to be able to deal with things that move or
change with time.

What you need to know
It is assumed that you are aready familiar with both vector algebra and the calculus of
functions of more than one variable. In particular, make sure you know about:

Vector algebra: Cartesian components, dot and cross products, triple products.
Calculus: partia differentiation, total differential, differential operators, multiple integrals.
Coordinate systems. Cartesian, spherical polar, cylindrical polar.

Mathematics provides the framework to make difficult things easy.

http://www-users.york.ac.uk/~pm1l/PMweb/teaching.htm




Revision

Vector algebra

A vector is aquantity that has both magnitude and direction. It isuseful in physics because it
can be used to represent velocity, accel eration, momentum, force, position, displacement and
many other quantities. The following is a review of the essentials of vector algebra that will
be used in this term’s mathematics course.

Representation
The algebraic symbol for a vector may be written in bold as a, or \
underlined asa. Inadiagram it isrepresented by an arrow:

The magnitude of a can be written as a, which is a scalar quantity and its direction can be
given by a unit vector n. The magnitude of n is unity, hence its name. It is a dimensionless
guantity and is used only to define a direction.

We can therefore write a as an where the magnitude and direction are given separately.

Cartesian components
A vector is often described in terms of its Cartesian components, i.e. the components of the
vector parald to the x-, y- and z-axes.

The directions of the axes are given by the unit vectorsi, j, and k so that a vector may be
written in terms of its componentsas a = aji + ayj + agk

Pythagoras's theorem gives the magnitude of the vector as a = \/a] +a’ +a;

Dot product

There are two ways of multiplying vectors, depending upon the context. The dot product of a
and b is written as a.b and the result of the multiplication is a scalar. It is therefore aso
called ascalar product.

The result of the multiplicationis a.b = ab cost where 0 is the angle between the vectors.
This definition showsthat a.b = b.a, i.e. the vectors commute.

It can be seen in the diagram that b cosO is the projection of b on a. b
This is often a useful way of thinking about scalar products, i.e. as a

multiplied by the projection of b. It is aso used to resolve one vector

in the direction of another.

If the vectors are orthogonal to one another, i.e. at right angles, then
ab=0 0

Also, the definition of the dot product leadsto a.a = a b coso

vo

The dot products of the unit vectorsi, j and k are therefore:

ii=jj=kk=1ij=j.i =0, ik=k.i=0; jk=kj=0
When the vectors are expressed in terms of their Cartesian components, so that a = a;i + ay
+ask and b =i + by + bsk, the dot product becomes (aii + ayj + agk).(bai + byj + bsk).
Multiplying out the brackets and using the dot products of the unit vectors given above

resultsin
ab=abi+tab +a3b;



Cross product
The other way of multiplying vectors is the cross product, written as axb which resultsin a
vector. Itistherefore also called avector product.

The vector product is defined by axb =absndn
where 0 is the angle between the vectors and n is a unit vector perpendicular to both a and b
suchthat a, b, n form aright-handed set.

This definition requiresthat axb = —bxa since reversing the order of the vectors changes
the sense of n, i.e. it points in exactly the opposite direction. Y ou must always be careful of
the order of the vectors when dealing with cross products.

A geometric interpretation of the cross product is shown in the axb
diagram. The two vectors a and b define the parallelogram and
the magnitude of axb isitsarea. The direction of axb is normal
to the plane of the parallelogram.

If the two vectors are paralel, the cross product gives the null
vector. Inparticular, axa=0

The cross products of the unit vectorsi, j and k are:
ixj =k; jxk =i; kxi=j; ixi=jxj =kxk =0
Note that, in the first three relationships, the vectors are always in the same cyclic order.

With a=aji + ay + agk and b = bsi + by + bsk, and using the above relationships, the cross
product becomes

(aul + agj +agk) x (i + byj + bsk) = (apbs-ashy)i + (ashi-aubs)j + (arbz-abi)k

I T ¢
Fortunately, thereis an easier way of expressing this: axb=|a, a, a,
b, b, b

Expansion of the determinant gives the same result as above.

Scalar triple product

Triple products of vectors frequently arise. The scalar triple product, written as a.bxc,
results in a scalar quantity, hence its name. To make mathematical sense, the cross product
must be evaluated first, giving a vector which is dotted with a.

A geometrical interpretation of the scalar triple product is  bxc
shown in the diagram. The three vectors define a
paralelepiped. The magnitude of bxc gives the area of the
base and its direction is norma to the base. The dot
product with a therefore resolves a in the direction of bxc,
giving the vertical height. Area of base multiplied by the
height gives the volume of the parallel epiped.

We therefore have the result that a.bxc = axb.c since the same three vectors are involved
and therefore give the same volume.

Similarly: a.bxc =b.cxa=c.axb = -c.bxa=-b.axc=-a.cxb
Clearly, if two of the vectors are parallel, the scalar triple product must have avalue of zero.



Vector triple product
The other triple product that arisesis the vector triple product, so called because it resultsin a
vector quantity.

It is written as ax(bxc) or (axb)xc. Note that the brackets are necessary to indicate which
product is performed first because (axb)xc # ax(bxc)

While providing a very compact expression, vector triple products are awkward to dea with.
For the purposes of algebraic manipulation, they are nearly always changed to an aternative
expression using the standard identity:

ax(bxc)=(ac)b — (ab)c

Straight line
Straight linesin 3D space are most conveniently represented using vectors.

The position of the line is given by specifying a point on it, e.g. the point

a, and its direction is given as paralel to the vector b: b
r(A\)=a+i1b r
where r is the position vector of a point on the line and the scalar a

variable A moves the point along the line.

If the line is defined as going through the two points a and b, then the vector b-a is in the
direction of the line and its equation is therefore: r(A)=a+Ax (b-a)

Space curve
A space curve isacurve in 3D space which may be used, for example, to describe the path of
aparticlein aforcefield.

An example of a space curveis: r()=acosbi+asndj+bok
where r(0) is the position vector of a point on the curve as a function of 6. As 6 varies, the
position vector traces out the curve.

In this example, the i and j components trace out a circle of radius a as 0 varies. In addition
to this, the k component varies linearly to move the particle along the z-axis, making the
space curve into a helix lying along the z direction with a pitch of 2zb.

Differentiation of vectors
If the vector is defined as a function of one or more variables, the possibility arises of
differentiating the vector function. Thisisacommon operation in vector calculus.

Taking the above space curve as an example, the derivative with respect to 6 is obtained by
differentiating each component separately:

dr dr

— =-—asnfi+acosdj+bk
do

which can be rewritten as: dr =(-asinfi +acosfj + bk) do r(0)\ / r(6+do)

The infinitesimal vector dr is the displacement required to move
fromr(0) tor(6+d0), i.e. r(6+d6) =r(6) + dr

Since both r(0) and r(6+d6) lie on the space curve, the vector dr must lie along the curve, so
it isin the direction of the tangent. This makes it possible to move along a space curvein a
series of infinitessimal stepsdr.



Vector calculus

Scalar field

Many scalar quantities have only a single value, e.g. mass of an electron, specific heat of
copper, speed of light. However, the value of a physical quantity may depend upon position
such as the air temperature in alarge hall or the height above mean sealevel of an area on the
Earth’s surface.

The association of a particular value of a physical quantity with each point in a region of
space is said to congtitute afield. When the physical quantity is a scalar, thefield is called a
scalar field.

Definition If to each point in aregion of space there corresponds a scalar quantity ¢, then
d(x,y,2) isknown as ascalar field.

Examples Temperature at each point within the Earth’s surface.
Electric potential at every point in an electron optical system.
d(xy,2) = Xy—2Z definesascaar field.

Representation Scalar fields are best represented as contour
mapsin 2 or 3 dimensions. Q

Vector field

Just as there are scalar fields, there are also vector fields. The velocity of a boat on a river
can be represented by a single vector, but the velocity of the water in the river can not. The
water velocity depends upon where it is measured.

Definition If to each point in a region of space there corresponds a vector quantity V,
then V(x,y,2) isknown as avector field.

Examples Velocity at every point in amoving fluid.
Magnetic field at every point in an electron microscope.
V(Xy,2) = xy%i —2yZj + x*zk definesavector field.

Before deciding on a good representation for a vector

field, let usgraph thefield V(xy) = Xi +Yj. v\'\ /

The magnitude of the vector is /x*+y® , which /4 /V
corresponds to distance from the origin.

The direction of the vector is arctan(y), which ha
X P
always points directly away from the origin. /

Placing a vector at each point in the diagram clearly \ \
gives avery clumsy picture of the field, although this
IS sometimes used.

Representation Since the quantity that distinguishes a vector field from ascalar field is
its direction, it is this which is plotted. This gives a clearer representation than when the
magnitude is plotted as well. Thus, a vector field is most conveniently represented using
field lines.



Field line A curve whose tangent vector at each point is in the direction of the vector
field at that point is known as afield line. (You may aso have used the terms line of force,
stream line or flow line.)

Having introduced fields, we are now going to look at three main measures of field
characteristics which enable us to do many important calcul ations of field properties.

Gradient of a scalar field

The first of the important field characteristics to be considered is the gradient of a scalar
field.

For afunction of asingle variable we have % = gradient y
X
which can be rearranged as dy = gradient x dx
This expression relates the amount by which the function changes,
dy, for asmall shift in the value of x, dx. I X

Now consider a scalar field ¢(x,y,2) and find the change in the value of ¢ for an infinitesimal
vector displacement dl.

Comparison with the above relationship suggests we can write
d¢ = gradient . dl

where it is clear that gradient must be a vector quantity and that a dot product with dl is
required to produce the scalar quantity d¢.

Thisisthe gradient of the scalar field ¢ and the standard way of writing it is

d¢ = grade . dl

To determine an expression for grad¢ in terms of x, y and z, we can express dl as
dl = dxi+dyj +dzk

and the total differential of ¢is d¢ = %dx+%dy+%dz
OX oy 0z

Putting these into the expression for d¢ requires grad¢ to be

grad¢:g—ii+%j+g—ﬁk

Note that ¢ is a scalar field and that grad¢ is a vector field. However, not al vector fields
can be expressed in terms of the gradient of ascaar field in thisway.

Since d¢ = grad¢ . dI, the maximum value of d¢ occurs when grad¢ and dl are parallel.
(Remember that a.b = ab cosd, which has a maximum when 6 = 0, i.e. when the vectors are
parallel.) The maximum rate of increase of ¢ isthereforein the direction of gradg.

We now have the important results that:
Direction of grad¢ = direction of maximum rate of increase of ¢.

Magnitude of grad¢ = maximum rate of increase of ¢.



Vector differential operator V ‘del’
It is convenient to express the gradient of a scalar field in terms of the vector differential

operator: V= i£+j—+k—

Compare with the operator di which gives the gradient of f(x).
X

The gradient of the scalar field ¢(x,y,z) can now be written as

op. 0¢. 0¢
radg =V¢ =—i+—|+—Kk
grady ¢ OX c’iyJ 0z
Mathematical example
If g(xy,2) = 3y —y*Z, find grad¢ at the point (1, -2, -1).
o .0

) ) . 0
Solution: Vo =|i—+j—+k—|I3x2y-y3Z?
¢(8x18y aZ](yy)

. 0 . 0 0
- |&(3x2y— y3zz)+15(3x2y—y322)+k E(szy— y3zz)

- V¢ = bxyi +(3x2—3y222)j -2y°%zk
Thisisthe gradient of ¢(x,y,2), so at the point (1, -2, -1) we have
V¢ =-12i-9j-16k

Manipulations of z

Here are some examples of algebraic and differential operations that may be carried out using
the V operator:

V(@+9)=VO+V¢ —normal rules of calculus apply
V(0¢)=(V0)p+6V¢ — the product rule

An example which will be useful later is:

Evaluatev(ij where r=xi+yj+zk e r:(x2+y2+zz)y2
r

ox\r

8 1 8 2 2 2*}/2 1 2 2 2’% X
—|=|==X"+y"+2z =-—=(X"+y°+z 2X = ——
8x[rj 8x( Y ) 2( Y ) re

Sincer issymmetricinx, y and z, it is sufficient only to determine i[lj :

We can now use this result to determine the other components of V(Ej :
r

1 X. y. zZ r
~ViEl=-=i-Zj-—k=—-——
[fj EERS re



Another example which illustrates the mathematics of the V operator isto evaluate V(a.r)
wherer isdefined aboveanda=a;i + a] + agk isaconstant:

V(ar)=V(a,x+a, y+a,z)=ai+a,j+a;k =a

Directional derivative of a scalar field

At any point in a scalar field ¢, the rate of change of ¢ will depend upon direction. The rate
of change given by V¢ corresponds to the direction and magnitude of the maximum gradient

at that point.

The component of V¢ in the direction of a unit vector n is given by Ve.n, which is the

directional derivative of ¢ inthedirection of n. It givestherate of change of ¢ at (X, y, 2) in
the direction of n.

Itiseasily derived as follows: d¢ = grad.dl
Expressdl asn dl then d¢ = gradé.n d
So that Ccll_qlb = grad¢.n = Vg.n

Physical examples

1. Electricfield Work done against an electric field E on moving a unit charge a vector
distance dl is—E.dl. By definition, this is equa to dV, the potentia difference between the
ends of the vector dl. (Remember that work done against a field is negative, work done by
thefield is positive.)

From the physical definition of potential: dv=-EdI

For ascalar field ¢, we already have: d¢ = gradé.dl

.. from the mathematical definition of grad: dV = gradVv.dl
Comparison of these expressions gives: [E=—gradV |

Electric potential, V, is a scalar field and the electric field E, the gradient of V, is the
corresponding vector field. The negative sign in the above expression comes about because
the direction of E is from aregion of high potential to one of low potential, but gradV is in
the direction of increasing V.

That the electric field is the negative of the gradient of the electric potential iseasily seenin a
one-dimensional example.

o | 2V +V v
For the ssimplefield in the diagram: E = o volts/ metre

The slope (gradient) of the graph is — %

So the magnitude and direction of thefield is E = +2%/i vV 4 \
Notethat gradV = %—Vi+a—vj+a—vk
X

oy o0z



For Vinvoltsand x, y, zin metres, the dimensions of gradV must be volts/ metre.

2. Heat conduction
Fourier’sfirst law of heat conductioniis: | Q= — kgrado |

where Q = quantity of heat/unit time/ unit areaflowing in the direction of Q.
k = thermal conductivity
0 = temperature

Again, we have an elegant relationship between a scalar field 6 and a vector field Q. The
negative sign arises because heat flows from high temperature to low, but grad6 is in the
direction of increasing temperature.

A formulain heat conduction you should already be familiar
withis: 0,

Heat / unittime = kx areaxel;[ﬁ2

This can be seen as Fourier’s law in one dimension.

3. Gravity M
From Newton’slaw of gravitation, the force exerted on mass

F_GMm @ ; ®
r.2
GMmr
r.3
where the negative sign is necessary since F and r are clearly in opposite directions.
GMm
r

mby mass M is:

With vectors, this expressioniis: F=-

Now gravitational potential is V=-

From previous results, we obtain gradV = -G M mv(lj — G Msm r
r r

Hence, we have the relationship | F= —gradV |

and the gravitational force field is minus the gradient of the gravitational potential.

Line inteqgral
Hereisavery important calculation on a scalar field. B

Consider a particle constrained to move along the line AB in the dl
forcefield F.

Theline AB isrepresented by the space curve I(t).

I(t
The work done by the field in moving the particle an ®
infinitesimal distance dl along the lineisdw = F.dl A o)

Therefore, the total work done by the field in moving the particle
fromAtoBis W = _[fF.dI

Thisisthelineintegral of F along the curve AB.



If the integral is performed round a closed path, returning to the starting point, it is written as
§CF.d| where C labels the path.

The value of a line integral will normally depend upon the positions of A and B and also
upon the path between them. We will see shortly how line integrals are evaluated.

Conservative field and scalar potential

A specia relationship between a scalar and a vector field is that the vector field F is obtained
as the gradient of the scalar field ¢, i.e. F = — grad¢. In this case, F is known as a
conservativefield and ¢ isits scalar potential.

An important property of a conservative field, F, is that the line integral of F between any
two pointsisindependent of the path between the points. Thisis proved asfollows:

. . B B B
Work done against the field = - [ F.dl = [ ‘gradg.dl = [ d¢ = ¢ —¢,

i.e. the work depends only upon the potential difference between the ends of the path.

It is clear from this that the line integral round a closed path in a conservative field must be
Zero: §C F.dl = O for any closed path C, if and only if F = — grad¢.

Examples of conservative fields

A gravitational field is conservative since the gravitational potential (or potential energy) of
an object depends only upon its distance from the centre of the Earth, i.e. work done depends
only upon differencein height and is independent of the path.

Since an electrostatic field is given by E = — gradV, E must be conservative. Work doneisa
function only of potential difference between start and end points and not upon the path.

Non-conservative fields
Friction — the direction of the force field is aways opposite to the direction of motion, i.e.
fF.di =0

A magnetic field is not conservative since Ampere' s law gives:

fHdl =1=0 I/'

H
work done in taking a unit current through

magnetic pole round a closed ~  theloop C
loop in amagnetic field

A particle taken round a closed loop in the appropriate direction will gain energy and
therefore can do work. This occursin an electric motor.

Comment

A conservative field is so-called because a particle interacting with a conservative
force field, for example, will have its energy conserved. There is no energy interchange with
the field and the sum of potential and kinetic energy of the particle is constant. You should
already be aware of this for gravitational and electric fields. A consequence of this is that
neither gravitational nor electrostatic motors can exist.
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In an electric motor, the electricity is used to produce a magnetic field which is not
conservative and from which energy can be extracted.

The generation of hydroelectricity does not extract energy from the Earth’'s
gravitational field — it requires energy from the Sun to provide the water in the upper
reservoir.

Evaluation of line integrals B
Line integrals have aready been defined. We will see now F dl

how they are evaluated.

KF.dI represents the work done by the force field F in

moving a particle along the line from A to B. 1®

The recipe for evauating line integrals is as follows. An A 9]

actual example will be given in the next section.
1.  Obtain an expression for the space curve AB, for example: [(t) =fy(t) i + f(t) j + f3(t) k

2. Differentiate to obtain dl: dl = df df —Zij+ df3k dt
dt dt dt

3. Obtain an expression for the vector field: F(x,y,2) = F1(x,y,2)i + Fa(X,y,2)] + F3(x,y,2k

4.  Substitute for X, y, z from 1. to obtain F(t), i.e. x = fy(t), y = fo(t) and z = f3(t). This
makes F a function of t only, which is the value of the force field aong the path — it
doesn’t matter what the force field is elsewhere: F(t) = F1(b)i + Fx(t)] + Fa(t)k

5. Now form F.dl from 2. and 4. Fli+F d +F, dfy dt
dt dt dt

6. Determinethe values of t at the ends of the path: ta, tg

d L+F,—2 d, +F 1jdt
dt

7.  Setuptheintegra: deI j(l ot ot

8.  Evaluate the integral. It should now be in the form of an ordinary integral in terms of
the single variable, t.

Example
If F(X,y,2) = (3X*+6Y)i-14yzj+20xz°k , evaluate LF.dI from (0, 0, 0) to (1, 1, 1):
a) adongthepath x=t,y=1t* z=1t b) along the straight line joining the points.

Solution: &) If x=t,y=t3 z=t3, then () =ti+t?] +tKk
and dl=(i+2tj +3°k) dt

If F(x,y,2) = (3X*+6Y)i-14yzj+20xz*k
then field on path is: F(t) = (3t*+6t%)i-14t°j+ 20t 'k
The end points of the path: when t=0, I(t) =(0,0,0) andwhen t=1, I(t)=(1, 1, 1)

Set up theintegral: LF.dI = I:(Qtz —28t°+60t°)dt = [3t3—4t7 +6t° =5

11



b) Thestraight linejoining (0,0,0)to(1,1,1)is x=t,y=t,z=t

S A@) =ti+tj+tk sothat dl =(i+j+k)dt aso F(t) = (3t*+6t)i-14t* j+20t°k
1

o [Pl = [ (6t -11% +20t% ot = {3t2—1—1t3+5t4} _13

C 0 3 3

0

The value of the integral clearly depends upon the path, so the field F cannot be conservative.

Supplementary example
For theforcefield F(x,y,2) =-yi + Xj + Zk, calculate the work done in moving a particle from
(1,0, 0) to (-1, O, m) dong the following paths:

a) thehelix x=cos0, y=sino, z=6.

b) the straight line joining the points.

Solution: a) Ifx=cosh, y=snd, z=0, then 1(0)=cosbi+snbj+0k
and dl =(-sinBi +cosbj + k) do

Field on path: If F(x\y,2) =-yi + X +Zk then F(0)=-sinbi+cosbj+0k
Work done: F.dl = (sin?0 + cos?0 + 0) do = (1 + 0) db
Ends of path: a(1,0,0) 6=0 a(-1,0,n) 6=n
. . T 621" T
Line integral: [F.dl = fo (1+6)do = [0 +7]O =n (1 +E)

b) Thestraight line through the pointsaand b is: I(A) =a+ A(b—a)
Therefore, the line through (1,0,0) and (-1,0,7) is:  I(A) =(1,0,0) + A(-2,0,) = (1-2A)i + Ank
sothat dl =(-2i +nk)dr
The expression for I(A) gives x, y and z values of all the points on the path, so we can obtain

an expression for the field on the path: FO)=(1-20)j+Ank
Work done; F.dl =i 7 di
Ends of path: a(1,00 A=0 a(-1,0,n) A=1
. . _ (a2 gy = 2 [2]
Lineintegral: JEdl= [An? dA=n [2]0— .

Level surfaces

Consider a scalar field ¢ without discontinuities. Connect al points in the region having the
same value of ¢. This will form a surface known as a level surface. It is the three-
dimensional equivalent of a contour line in two-dimensions.

Let dlg lie within alevel surface, then the difference in the value

of ¢, do, between the ends of the vector dly is zero. grad¢ d
But we have already do = grads . d . °
so that O=grad¢ . dlp

12



In genera, neither gradd nor dlo will be the null vector, so the dot product requires grad¢ and
dlo to be perpendicular, i.e. grad¢ isnormal to the level surface.

Mathematical consequence
d(X, Yy, 2) = constant defines a surface in three-dimensional space —alevel surface.
V¢ isaways normal to this surface.

Physical conseguence

Consider an equipotential surface V(X, Y, z2) = Vo in an electric field E. Since E = —gradV, the
field vector must be normal to the equipotential surface.

The surface of astatic liquid is a surface of equal gravitational potential. The direction of the
gravitational field is therefore normal to this surface.

The steepest way uphill is perpendicular to the contours.

In a heated body, level surfaces of temperature are called isotherms. The direction of heat
flow is dways normal to the isotherms.

Vector area

A concept which is essential to the understanding of the properties of fields is that of vector
area. Itisnot immediately obvious that areas can be represented mathematically as vectors,
but it is easy to demonstrate. We start with the definition.

If the vector S represents a plane area then: S
The magnitude of the vector givesthe size of the area.

The direction of the vector is normal to the plane of the
area.

The vector contains no information about the shape of the area.
To demonstrate that an area can behave as a vector quantity, consider a hollow cube filled

with agas at apressure P. Let the area of each face of the cube be A. The force on each face
due to the internal pressure will therefore be given by:

F=PA —
However, force is a vector quantity and the direction of the
force will be normal to the face. The quantity PA must —1
therefore also be a vector normal to the face of the cube. Since F

pressure is a scalar, we must conclude that A is a vector
parallel to F, so we can write:

F=PA

If the areais on a curved surface, we can take part of the area small
enough to be regarded as a plane and represent the small area by
the infinitesimal vector dS.
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Flux

An important measure of a vector field is its flux. Consider a
fluid moving with a velocity given by the vector field F(x, y, 2).
Its rate of flow (volume/ time) may be obtained by observingits
velocity through an area represented by the vector S: E
S
—_—

flowrate = speed x area = |F| x |F]

If the areais reoriented so that F and S are orthogonal, no fluid

will pass through the area, so the measured flow rate will be zero: — S
F
flowrate = O — 2

A more general case is afforded by orienting the area so there

isan angle 6 between F and S. The area presented to the flow — F
isnow |S| coso: V@

flowrate = |F| x [S| cosO S

All of these results can be obtained as the dot product of the two vectors involved:
i.e. flowrate = F.S

Not all vector fields correspond to a flowing substance (very few do), yet the same
measurement can be made on any vector field. Instead of calling it flow rate (because
nothing may be flowing) a generic term is used, i.e. flux. Flux is simply the Latin for flow.
We can therefore refer to the flux of an electric or gravitational field and measure it as F.S.

It is more useful to measure flux at a point in afield and this is done using an infinitesimal
areadS, i.e flux at apoint =F . dS.

Calculation of dS for any surface

Calculations of flux require a value of dS, the element of vector area. The easiest way of
achieving this is to express the equation of the surface in parametric form such that r(, p)
gives the position vector of apoint on the surface for any A, p.

Thevector (A, n) — (A+dA, ) liesin the surface and is %d;t

(A, ptdu)
. . or ou du
Thevector (A, n) — (A, u+du) liesin the surface and is —du H

O or o

These vectors define an element of area given by oA

Ay A+dA,
dS:a—rxa—rd/ldy (1) ( 1)

0L ou

Remember that the magnitude of a cross product gives the area of the parallelogram defined
by the two vectors and that the direction of the cross product is normal to the plane of the
vectors.
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Example — cylindrical surface
Cylindrical polar coordinates are defined by: x=r cosd; y=r sing; z=z
A point on acylinder of radiusaistherefore: x=acosd; y=asno; z=z

This makes the position vector of the point: r(@,z) =acosfi+asngj+zk
[ ' k
or or . : z do
d8=%x§d9dz: —asing acosfd 0dodz
0 0 1 dz
= (acosfi+asing j)do dz = a(cosfi+singj)do dz a ado

This is a unit vector normal to the surface multiplied by the
scalar a do dz. Thisis seen to be the magnitude of dS from the
diagram.

Example — spherical surface

Spherical polar coordinates are defined by:  x=r cosp Sinf; y=r sing Sinf; z=r cosd
A point on asphere of radiusa istherefore: x=acosp sind; y=asing sin; z=a cosd

This makes the position vector of the point: r(0,¢) = asindcos¢i+asnfsing j+acoso k
U i j k z

-.dS= —rx—rde d¢ =|acosfcosp acosfdsing —asinf dode¢ ad
00 0¢ 0 a .

—asindsing asinf cos¢ ?

= a’sing(sinfcospi+sinfsing j+cosOk )do dp f >
~ asinfdd

This is a unit vector normal to the spherical surface multiplied by a*
sind do d¢, which is seen to be the magnitude of dS from the diagram.

Surface inteqgral

The calculation of flux normally involves the use of a surface
integral.

Consider a surface Sin a vector field F(x, y, 2). Let dSbean
element of area on S such that dS is always normal to the
surface. By convention, dS points outwards if Sis a closed
surface.

The flux of F through dSisF . dS
Therefore, total flux through S = ” F.dS
S

where the integral is taken over the whole surface S Thisisasurface integral. Note that it
isadoubleintegral.

Since dS = n dS where n is a unit vector, the surface integral can be written as ”F .nds
S

which isthe integral of the normal component of F over the surface.

15



A surface integral may sometimes be written as IF .dS but itisstill adoubleintegral.
S

If the integral is over aclosed surface, it may be written as ﬁF.dS or ifF.dS
S S

Evaluation of a surface integral

The evaluation of a surface integral is carried out in the same way as a line integral, except
there are now two variables instead of one.

Example: Evauate the surface integra ”F.ds where F(x,y,2) = zi+xj-3y?zk and Sis
S

the curved surface of the cylinder x* + y* = 16 in the first octant between z=0 and z= 2.
Solution: The equation of the curved surface of acylinder is r(8,z) = (4cos@,4siné, z)

From previous results, dS = %x% do 6z = 4(cos0,sin6,0) dO dz
z

On the surface of the cylinder, x =4 cosb and y = 4 sinf. Substitute these into the expression
for F(X, y, 2) to obtain the value of F on the surface:

.. F(0,2) = zi+4cos0 j—3(4sin6)? zk
Now form F . dS: F.dS = 4(zcos6 +4cosfsing)dé dz

7 2
The surface integral is therefore ”F.ds =4 j j(zcos¢9+4sin0cos¢9)d9 dz
S

0=0 z=0
% 2 ’72 2
- 4jcosed9jzdz+8jsin29dejdz
0 0 0 0

T

2

Vs 2
= 4[sin 9]0/2 B 22} +8[—%00529} [z]; = 4.1.2+8.(%+%j.2 =24

0 0

Supplementary example: Evaluate the surface integral ”F .dS where F(x,y,2) =vyi + X + ZK
S

and Sis the hemispherical surface x* +y* + Z =4, z> 0.
Solution: The equation of aspherical surface of radius a, centred on the originis

r(0,¢) = a (sinf cosg, sinf sing, cosH)

ar
a6

From r(6,¢) witha =2, x=2sn6 cosp, y=2sn0 sing, z= 2 cosd. Substitute these into
the expression for F(x,y,2) to obtain the value of F on the surface:

F(0, ¢) = (2 N6 sing, 2 sinB cosp, 2 cosH)
Measure of flux: F.dS=4sind (2sin°0 sing cosp + 2 sin’0 sing cosd + 2 cos’0) do do
= 8 sind (sin’0 sin2¢ + cos?0) do d¢

From previousresults, dS = — X 2—; df d¢ = a?sinf(sind cose, sinf sing, cosd)dO d¢

16



Surface integral: JI; F.dS=38 f:z/g f;:o sinf (sin* 6 sin2¢ + cos?6) db d¢

=8, 2sin* 6. d [*"sin2¢p d¢p + 8 [, /2sin cos? 0 d6 [" dp
Thefirst doubleintegral is zero — integration of a whole number of sin waves over 2.

The second double integral is evaluated using the substitution u = cosd so that du=-sind do
0 21 1 16
o Jfy FdS= =8 [[udu ["dp=8x_x2m=—m

Volume integral

After line and surface integrals come volume integrals. However, these are just ordinary
triple integrals and don’'t need any specia tricks for their evaluation. An example of a

volumeintegra is J-'UQS dv wherethefield of integration is avolume.
\%

If ¢ is charge density, then ¢dV is the charge contained in the volume dV. The integral will
therefore measure the total charge in the volume V.

The concept of divergence of a vector field

The second important characteristic after the gradient of a scalar field is the divergence of a
vector field.

Enclose a volume V in the vector field F(x, y, 2) by an arbitrary closed surface S. The total
outward flux of F through Sis given by ﬁ F.dS. Now consider the following:
S

The field inside S is continuous, i.e. there are no sources or sinks.
What goes in also comes out, so the inward flux is equal to the

outward flux making ﬁF .dS=0
S

A source of the field inside S gives a net outward flux through the
surface, making j':fF .dS>0
S

Thereisasink of thefield (asink is the opposite of a source) inside S,
This gives anet inward flux through the surface so that ﬁ F.dS<O0
S

It is clear that the surface integral can be used as a detector of sources or sinks of the field. It
gives ameasure of the total strength of sources (i.e. sources—sinks) inside S

For distributed sources, a more useful measure is the source strength per unit volume given
by ViﬁF .dS whereV isthe volume enclosed by S
S
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It is even more useful to pin-point the sources and sinks. This is done by shrinking the
volume V to the point where the surface S encloses an infinitesimal volume dV. This will
give a measure of flux / unit volume diverging from a point. We therefore define the
divergence of thefield as

lim 1

divF = —
AV —-0AV

{:} F.dS where AV isthe volume enclosed by the surface S
S

The limit isfinite and independent of the shape of the volume element AV.
Note that divF defines ascalar field.

An expression for the divergence of a vector field

Consider the elementary rectangular volume ABCDEFGH whose edges are paralel to the
coordinate axes and of lengths Ax, Ay, Az

The volume is centred on the point (X, y, 2) in the vector field F(x,y,2) =F1i + F,] + Fsk

Assume that Ax, Ay and Az are small enough to approximate the value of the field F over
each face of the box by the value at the mid point of the face.

Now evaluate the surface integral {:J( F.dS over the surface of
S

A
the box by calculating the flux through each face separately. ] 4 e -
For theface EFGH: F.dS=F, AyAsz%(F1 AyAz)[%j
B
This comes from: F.dSatthe . change of F.dS upon .
mid plane ~ moving to the front face F_ & g
y

X
For theface ABCD: F.dS=-F, AyAz+§(— F, AyAz)(— %)
X

Adding these gives the total outward flux in the x-direction as ? AXAy Az
X

Similarly, the total outward flux in the y-direction is %AxAyAz
| o oF,

and in the z-direction it is a—AxAyAz
VA

The value of the surface integral over the whole surface is the sum of these:

F
.'.ﬁF.dSz @-ﬁ-@-i-a—s AXAY Az
S oXx oy o0z

Thevolume of thebox = AV = AXAy Az

Divergence can be expressed in terms of the vector differential operatorv . Consider:

18
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. . . . F .
V.F= |£+]i+k2 .(F1I+F2j+|:3k):@+ai+&:dIVF
ox "oy oz ox oy oz

Mathematical examples

Refer back to the vector field V(x, y) = xi +y] that was sketched in the first lecture.
Imagine that it represents the velocity of flowing water. The flow rate near the origin is small,
but the vectors further away from the origin show that the flow rate must increase as distance
from the origin increases. Where does the extra water come from? The divergence of the
field detects the sources and sinks of the field, so a calculation of the divergence should
answer this question:

divw =V.V = [i%ﬂ%)(xwyj): 1+1=2
Thereis positive divergence everywhere (independent of x and y) so there must be a source of
water of the same strength over the whole field to produce this particular flow pattern.
A more adventurous example of the calculation of divergenceis:
div(xyzi +xy?j+2yz? k): V. (xyzi +xy?j+2yz? k): YyZ+2Xy+4yz=2Xxy+5yz
The normal rules of calculus apply when manipulating expressions involving V :
V.(A+B)=V.A+V.B - the derivative of asum isthe sum of derivatives.

V.(pA)=(Vg).A+¢(V.A) - the product rule. Since divergence is a scalar quantity, the

terms on the right hand side must also be scalars and this dictates where the dot operators
should be.

Before we consider applications of divergence to physics, we must first look at a very
important theorem.

The divergence theorem
Consider afinite volume V bounded by a simple closed surface Sin avector field F.

Total flux through the surface= j':f F.dS
S

Now, from the definition of divergence:  divF = ﬁﬁ F.dS whereS boundsdV
&

the flux diverging from the volume element dV = divF dV

Therefore, the total flux diverging fromV = J'J' divF dv
\%

However, flux diverging fromV = flux through S

j j j divFdv = ﬁ F.dS wherethe surface Sisthe boundary of the volume V
\% S

Thisisthe divergence theorem, which can be expressed in words as:

The surface integral of the normal component of a vector field F taken over a simple closed
surface S is equal to the volume integral of the divergence of F taken over the volume
bounded by S
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Definition: A simple closed surface can be deformed continuously into a sphere without
intersecting itself. Therefore, atorus (the shape of aring) is not asimple closed surface.

Comment:  Mathematicaly, this relationship between a volume and a surface integral can
be used to evaluate either by converting one to the other. However, its importance in physics
isimmense as we shall soon see.

Electric field

Gauss's law of el ectrostatics states that:
Totd electric  flux _ Tota electric charge
through a closed surface enclosed by the surface

.'.ﬁE.dS:éIJIpdV

where p = chargedensity (coulombs/ metre®)
and &0 = permittivity of free space = 8.85 x 10™? farad / metre

From the divergence theorem: ﬁ E.dS= j j jdivE dv
S \%

Equate the two volume integrals: m divEdV = gi m padVv
v 0 v

Since the volume is arbitrary, the integrands must be equal, so we have:

divE = 7
&o

and thisisthe differential form of Gauss' s law.

Since divergence detects and locates the sources and sinks of
a field, we see from Gauss's law that the sources of an
electric field are electric charges. These are the places where
the field lines begin and end, as seen in the sketch of a very
simple electric field. Divergence is positive at positive
charges and negative at negative charges. Elsewhere, where
the field lines are continuous, the divergence is zero.

It isinstructive to examine the dimensions of the three integralsin the above analysis.
1 .
—|||pdV = [|||divVEdV = (}E.AS
2 [foav - [ffaveay -

Their dimensions must all be the same to make physical sense. Let [x] mean the dimensions
of x, then we have:

= volt metres

18 integral: [p][dv]{i} _ coulomb metre® metre  coulombx metre

go |  metre® farad farad

Notethat farads = &Ttmbs , which comes from the formulafor capacitance C = 8
volts
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volts

2" integral: [divE][dV] = _metre® = volt metres
metre
Note that [E] =V / m, but since dive = 22+ %52, % rhivE] = v/ m?.
ox oy oz
3%integral: [E][dS] = VOltS | etres? = volt metres
metres

Magnetic field

In regions where single magnetic poles do not exist
(which is everywhere) the divergence of a magnetic field,
H, must be zero. We can therefore write divH =0, i.e N S
the field lines are continuous and do not begin or end

anywhere. This can be seen in the magnetic field in the

diagram. Bar magnet

Any vector field for which divF = 0 everywhere is
called solenoidal.

[Electric fields are conser vative whereas magnetic fields are solenoidal .]

The Laplace operator
We have seen that an electric field, E, is given by E = -gradV

From Gauss's law we also have dive = £
)
Eliminate E to give divgradv = - £
€o

This result requires that the scalar field V be differentiated twice. The differential operator is:

2 2 2
divgrad:V.V=V2= i£+j£+ki .i£+ji+kﬁ :a_+a_+a_
ox “oy oz)\ ox oy az) ox? oy? oz

and this is the Laplace operator, usually written as V2. The above equation may now be

rewritten as v/ = -2 whichisknown as Poisson’s equation.

€o

In regions where there are no free charges, the equation is reduced to

VA =0 | whichisLaplace's equation.

Laplace’s equation is one of the most fundamental equations in mathematical physics. Itisa
second order partial differential equation, having applications in electrostatics, magnetostatics,
hydrodynamics, heat flow and many other fields. Its solution is the scalar field V(x, vy, 2).
You will learn how to solve it in a subsequent maths course.

The concept of curl of a vector field

The third of the important field characteristics (after grad and div) that we need to know is
called curl.
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Recall that the value of the line integral round any closed loop in a conservative field is
always zero, i.e. §F.d| =0 if F=—gradg

A zero value for this integral is rather special, indicating that the field is specidl, i.e. it is
conservative. In general, this integral will not vanish and its value measures an important
property of the vector field. Consider the following.

Take a plane loop in a vector field, F, as shown. To keep
things easy, let the direction of F be everywhere the same,
but allow the magnitude to vary as in the diagram. We will S E—
now evaluate the line integral of F.dl around the loop. With —— F
the normal to the loop at right angles to the field, the value
of F.dl will be zero on the vertical sides, large and negative
on the top side and small and positive on the bottom side.
The sum of theseis certainly not zero.

A

v

In the second diagram, the loop has been reoriented so its
normal is now paralel to F. The value of F.dl on al four
sides of the loop is now zero. Clearly the value of the line
integral depends upon the orientation of the loop. This
makes it a function of the vector n, the normal to the loop,
so it has the property of a vector.

If F is aforce field, the quantity measured by the line integral is work done by the field.
However, the same measure can be made on any vector field, whether it isaforcefield or not.
The generic name for the quantity measured is circulation. It is more meaningful to refer
circulation to the area of the loop and circulation per unit area is the curl of the field. We
measure circulation at a point by shrinking the loop to a point and define the curl of the field
by the formula:

1

n.curlF = —
AS—0 AS

ﬁ: F.dl wherethe curve C isthe boundary of the area AS

This expression gives the component of curlF in the direction of the unit vector n which is
normal to the plane of the curve C. Clearly, curlF isavector field.

Sign convention: the direction of circulation round the loop and the direction of the normal
to the loop form aright-handed screw.

The curl of a vector field will be non-zero wherever the field possesses shear (as in the
diagrams above) and certain kinds of rotation. We will examine this more closely when we
consider applications in physics.

Curl of a vector field in Cartesian coordinates D C
We will derive an expression for the curl of a vector field

1 § F.dl round the z Y 4

Ay Az €

closed loop ABCD in the vector field F = F1i + F5] + F3k. _
The sides of the loop are parallél to the coordinate axes and A Ay B

are of lengths Ay and Az.

y >
The sign convention means that for the direction of /
circulation shown, the integral will evaluate the positive x- X

A

AZ

by evaluating the line integral
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component of curlF.
The centre of the elementary loop ABCD isat (X, Y, 2).

Assume Ay and Az are both small enough so the value of the vector field along each line can
be approximated by its value at the mid point of the line.

Now §F.di :jABF.dl+j:F.d|+j:F.d|+j:F.d|

- (FZ Ay+%(F2 Ay)(— %D+(F3 Az+%(F3 Az)(%jj
+(— F, Ay+%(— F, Ay)(%j}(— F, Az+%(— F, Az)(— ﬂn

2
= ﬁ(|:3 AZ)Ay—i(F2 Ay)Az = %_@ Ay Az
oy 0z oy oz
.. the x-component of curlF = ! §F.d| = %—@
Ay Az oy oz

This expression can be used as a pattern to obtain the other components of curlF giving:

curlF = s i [ % j+ F _H,
oy oz 0z 0OX ox oy

Just as grad and div can be expressed using the V operator, curl can too. Consider

[ j k

oF, oF,). (oF, oF,\. (oF, oF

VxF =0 0 o/ | = 8_ T2 |j4| T8 4| =2 -1k = curlF

* AX Ay é (ay az] (az axjj (ax 8y]
Fl FZ F3

We now have a complete set of field characteristics:

gradg =V¢  (vector field)
divF =V.F (scdar field)
curlF =V xF (vector field)

As before, the normal rules of calculus apply:

Vx(A+B)=VxA+VxB - thederivative of asum isthe sum of derivatives.

V x (¢ A) =VoxA+¢9VxA - theproduct rule. Note that the cross operator always results
in the right hand side terms being vectors.

Conservativefield revisited: Since curlF is measured by §F.d| and §F.d| =0 for

al closed paths in a conservative field, then a conservative field must have curlF = 0
everywhere. Thisisthe easiest test for a conservative field.

Note that we now have:
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conservativefield has curlF =0
solenoidal field has divF =0

Mathematical example
If A=x%yi—2xzj+2yzk, find curl curlA.

Solution: Because curlA is a vector field, its curl can aso be determined, so the field is
differentiated twice:

i k K
curl curlA = Vx(VxA)= Vx/ Ay (A= /x /8y %z = (2+2x)j
X’y —2xz 2yz| |2z+2x —27-X%*

Rigid body rotation

The first of our physical examples examines a rotating field to see Yo
what its value of curl is. The system considered is a rotating disc.
The linear velocity of each point on the disc constitutes a vector field C

and the linear velocity is given by
V = @xTI r

where o is the angular velocity, which points along the axis of
rotation, and r isthe position vector of a point on the disc

Let us now obtain an expression for the curl of v. Define ® as (w1, @, ®w3) andr as (X, Y, 2):

i j Kk i j k
curly =Vx(eaxr) =Vxlo, o, o= %x %y %z

X ¥ Z] |0,Z2-0Yy 0;X—0,Z o 0,X
:(a)1+a)1)i+(a)2+a)2)j+(a)3+a)3)k:2co

This shows that the circulation is constant over the whole field v (its value is independent of
position).

Comment:  Perhaps it is no surprise that a rotating system has lots of circulation and
therefore a non-zero value of curl. However, before jumping to conclusions, let us examine
another rotating system in the same way.

The field lines of v for the rotating disc are concentric circles. A field
with virtually the same lines is the velocity of water flowing down a
plug-hole. The field lines cannot be exactly concentric circles, but they
can be very close, so we will assume they are to simplify the
mathematics. It will be instructive to compare the two fields.

Water down a plug-hole

As before, we will determine the curl of the linear velocity field. First of al we need to
determine how the water moves - it doesn’t behave as arigid body like the rotating disc.

Consider asmall parcel of water of mass mat radiusr with angular velocity .
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Angular momentum about the centre of the field = moment of inertia x angular velocity = o
Ignoring viscosity and friction, angular momentum is constant.

) - constant
S lo=mr°em=constant giving ©=———
mr
Thismakesthe linear velocity =v =wr = const?ntr _ constant thatis, v 1

mr mr r

A vector field whose field lines are concentric circles and whose magnitudeis 1/r is:

—Yi+X]
X“+y
We can now calculate curlv as
i j k
6/ 6/ a/ 1
— _ -2 —
Vxv _?IX xay 0z —<x2+y2—x(x2+y2) 2x+x2+y2—y(x2+y2) 2Zy)k

[x2+y2 x2 +y2

2 2x% +2y?
={X2+ 2 o2 zz}kzo
y© (XT+y9)

Comment:  This result of obtaining zero curl for a whirlpool may be surprising if we had
tried to predict the result. What isit telling us about the flow of water? What is the essential
difference between this and the rotating disc?

If we place a marker on the rotating disc, it will be A
carried around a field ling, i.e. it will interact with the field,
changing orientation asit goes. It will complete one rotation for % \
each revolution of thedisc. Thisisobvious. @ @

If we float a cork on the whirlpooal, it will aso interact ' '
with the field, but how will its orientation change? This is not N .
so obvious and we really need to do the experiment. The OU @
video of this (shown as part of the course) shows that the
orientation of the cork does not change asiit is carried around by
the field. Thislack of rotation is what is predicted by the zero

curl. )

Curl is seen to be a measure of that property of a vector
field which will change the orientation of an object interacting ! \

with the field. @ @

Theaxis of rotation isthe direction of curl. )
The speed of rotation is measured by the magnitude of curl. ) @ ’
Just as the concept of divergence gave rise to the very important Whirlpool: v o« %

divergence theorem, there is an equally important theorem
involving curl — Stokes' s theorem.
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Stokes's theorem
Consider a surface S bounded by a closed curve C in a vector
field F.

Consider aso an element of area ABCD on S and its adjacent
element ADEF, enlarged in the lower diagram.

B C D A
For ABCD: jQF.dl:UA i jF.dI
ABCD
and for ADEF: fF . :UDE o[ +f +j:’jF.d|
ADEF
C D E
But [[Fai=—[F.a
D A
Therefore [ § o JF.dI:UB ] - fra
ABCD  ADEF A B ¢ b F F ABCDEF
which is around the boundary of the combined area.
From the definition of curl:  curlF.n = %gﬁF. dl
so that curlF.dS = §F.d| where the lineintegral is round the boundary of dS.

Integration of this expression over the whole surface S is achieved by adding up the
contributions of adjacent elements of area. As each new element is added, the line integral on
the right is always round the boundary of the combined area as seen in the above analysis.
The final result is therefore:

”curIF .dS= §F .dl where C isthe boundary of S.

S C

Thisis Stokes' s theorem which can be expressed in words as:

The line integral of the tangential component of a vector field F taken round a simple closed
curve C is equal to the surface integral of the norma component of the curl of F taken over
any surface having C as its boundary.

Definition: A simple closed curve can be continuously reduced to a point without
intersecting itself, i.e. it doesn’t form a knot.

Comment:  Mathematically, this relationship between a surface and a line integral can be
used to evaluate either by converting one to the other. However, it is an extremely important
theorem of immense use in physics as we shall soon see.

Summary of integral relationships

We now have a set of three quite remarkable integral relationships and it is worth looking at
them all together:

Divergence theorem: j j jdivF dav = ﬁ F.dS where surface Sisthe boundary of volume V.
\% S
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Stokes's theorem: j j curlF.dS = § F.dl where curve Cisthe boundary of surface S.
S C

B
Conservative field: J'gradq’) dl = ¢5 —¢, where A and B are the ends of a defined curve.

A

They involve the three major field characteristics — grad, div and curl — that we have been
considering. In each case, the expression on the right involves only the boundary of the field
of integration on the left. The left-hand-side integrals can therefore be evaluated without
knowing the detailed behaviour of the field inside the boundary.

Ampeére’s law
Ampeére's law for a steady current relates the magnetic field around a

current-carrying conductor to the electric current flowing along the /v
conductor:
H
fH.dI =1
C
Circulation of magnetic _
field round a closed loop current through loop
Be careful about the physical dimensions in this expression. Note that:
B = uoH invacuo H = magnetising force ampere/ metre
B = magneticinduction  weber / metre®
1o = permeability of free space = 4nx10™ henry / metre
From Stokes's theorem: ¢. H.dl = [[. curlH.dS where Sis any surface having C as

its boundary.

Now express the current in terms of current density J, measured in amps / m?, i.e. current
flowing through unit area. The vector direction gives the direction of flow of the current.

We find that: | = ”J.ds where the surface integral is over the same surface
S

Sasin Stokes stheorem, i.e. flux of J = current.
Substitute for | from Ampeére' s law and make use of Stokes' s theorem to give

~§ Hdl= [ J.dS sothat [[curlH.ds= [[J.ds

Since the surface Sis arbitrary, the integrands must be equal, so that:

and thisisthe differential form of Ampeére'slaw.

Grad in spherical polar coordinates
So far, we have always used Cartesian coordinates to develop expressions for curl, div, grad

and V2. However, it is useful to have the equivalent expressionsin cylindrical and spherical
polar coordinates as well.

Consider ascaar field f(r, 0, ).

27



We already know that df = gradf.dl

Thetotal differential of fis. df = 2-dr + 2 do+ 2 dg S|
or 00 o¢ ,
r sind d¢

Fromthediagram: dl = dr F+rd0 O +rsin 0 d¢ ¢

n . . . . . . ) do
where r, 0, ¢ are dimensionless unit vectors in the directions of '
increasing r, 6, ¢ respectively, so that /@/ y

FF=00=¢.¢=1, F.0=F.$=0.§=0 X

Let gradf = Ar+A0+A ¢

Then grad .di = (A #+A, 6+ A, ¢).(0r f+rdobd+rsinodpe)= A dr+ A, rdo+A, rsinodg

. . . of 10f 1 of
C t df and gradf . dI ) =— =—— =
omparing termsin df and gr gives. A P A, Ty A = yprmy: a¢
. gradf = 8f r+-— 1o Z 0+ 1 i(i)
o roo  rsne o¢
Div in spherical polar coordinates H

Consider an elementary volume ABCDEFGH centred
around the point (r, 6, ¢) in the vector field

F(r,0,¢)=F t+F,0+F, ¢

Assume that Ar, A6, A$ are al small enough so the
field F on each face of ABCDEFGH can be
approximated by its value at the mid point.

lim
M1 oer s

To determinedivF, use divF = —
AV - 0 AV 3 0

rsinbAd

where Sisthe surface of AV.

Flux through face ABCD (= F.dS) = —Frrzsin0A9A¢+§( For sm9AOA¢)( Azrj
r

Flux through face EFGH = F, r sn9AOA¢+ (F r sm@AGAqﬁ)( Zj
-, total outward flux in f -direction = ;%(Fr r>sin6 A0 A )(Ar)

Similarly, total flux in @ -direction = %(Fg rsind Ar A¢)(A8)

Total flux inthe ¢ -direction = %(ﬁ r Ar AG)(Ag)

0 (. 0
{:fF ds = [sm@—(r F)+r£(sm0F9)+r£(F¢)}ArA0A¢
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Elementary volume AV = r?sind Ar A0 Ad

i
gvi= " L fras=L o0 F) -t % (snoF, ) O (F,)
AV — 0 AV °%¢ reor rsing oo rsing o¢

The Laplacian operator in spherical polar coordinates

The Laplacian operator, V2, isgiven by div grad and we have just developed expressions
for both grad and div above.

v?:divgrad=div(§f~+lié+ L aAj
r

r oo rsinea_gb(p
2
T r () ) PV
reor or) rcsing o0 00) r=sin“0 o¢
Comment: You are not expected to remember complicated expressions like these. You are

given the complete set of expressions for grad, div, curl and V? in Cartesians, spherical and
cylindrical polarsin the formula book in exams. However, you are expected to be able to use
them. You will come across them again in physics courses.
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GRAD, DIV, CURL AND V?* IN DIFFERENT
COORDINATE SYSTEMS

Cartesian coordinates

Cylindrical polar coordinates

gradg = 2% 4 995 9Py gad(f) = ¢+ 285, 5
oX oy 0z or r oo 0z
give = 1, O OF, div(F) = 1 i(r F )+ 0 (F,)+ g(er)
OX oy 0z r|or 00 0z
i ik . Poore z
—|0 0 0 =0
curlF = 5 oy oz curl(F) = ; ér é@ o0
F, F, F F. rF, F,
0> 9° 07 10( 0 10> 0°
V? = >+ > V?= __(r_j T2 Ap2 2
oX oy 0z ror\ or r< oo 0z

Spherical polar coordinates

of . 1of 1 o .
grad(f)=—r+-——+———9¢
or rof rsind o¢

, 1 0,. 1 0
r2 or (r Fr)+ rsinOE(SInOFG)jL rsinH%(F"’)

Fr0 rsinf¢

curl(F)=rzsin9 %r %9 %¢

F rF, rsnoF,

, 1o(,0 1 o(. .0 1 0°
Vi=s—S—Ir"—l+—S——|9n0— |+ 5—— 5
reor or r<sinf oo 00 rsin0 o¢
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The continuity equation

We will now bring in time as an extra variable. Most things move or change with time and
we have to be able to deal with that.

Consider a substance of density p(X, Y, z, t) with a flow rate (flux) given by J(x, y, z, t) as
amount of substance/ unit area/ unit time.

Consider also an arbitrary volume V bounded by the closed surface S.

Total amount of substanceinV = jﬂp dv
\%

. rate of increase of substanceinV = ﬁmpdv
at \%

Assuming p to be continuous in V with respect to space and time, we can reverse the order of

operations so that aw :-[\;Uﬁ
. rate of increase of substanceinV = J'J’J'%pd\/
\

Now measure the same quantity in a different way and equate the two results.
Amount of substance flowing through element of areaon Sinunittime = J.dS
Because dS points outwards, this measures amount of substance lost from V.

*. rate of decrease of substancefromV = ﬁJ.dS
S
But, from the divergence theorem ﬁJ dS = m'div\] dv
S \
*. rate of decrease of substanceinV = ﬂ divl dv
\

If there are no sources or sinks in V, these two results must be the same. We therefore have
[[[Lav = - [[[divaav
\Y at \Y

Since Visarbitrary, the integrands must be equal. This gives the continuity equation as:

divJ +8_p =0
ot
Examples
1. Fluid (gasor liguid)
J = pv with dimensions mass/unit area/ unit time [div]] = mass/ val / time
where v = velocity
and p = density [6p/6t] = mass/ vol / time
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If p increases at a point making dp/dt > 0, this can only be achieved by a net flow of fluid
towards the point making divJ < 0 such that divd+6p/dt = 0.

If the fluid is incompressible, then 6p/dt = 0 so that divd = 0. This means that divv = 0 and
v must therefore be a solenoidal field.

2. Electricity
J = current density (coulombs/ area/ time) [divd] = coulombs/ vol / time
p = charge density (coulombs/ vol) [6p/6t] = coulombs/ vol / time

A build-up of charge at a point, making 6p/ct > 0, is only possible by a net flow of charge
towards the point, making divJ < 0 such that divJ+op/ot = 0.

In agood electrical conductor, there can be no build-up of charge. Thismeansthat op/ct = 0
so that div] = 0 and J is solenoidal.

3. Heat
J = heat flow (quantity of heat / area/ time) [divd] = heat / val / time
p = heat density = quantity of heat / vol [6p/6t] = heat / vol / time

_ mass x specific heat x temperature
vol

= density of heat conductor x specific heat x temperature
The more usual symbols used for heat are:
Q =heat flow; p =density of conductor; o = specificheat; 6 =temperature
Assuming p and o to be constant with time, the continuity equation for heat becomes:

) 00
divQ + — =0
Q PO~

The temperature can only decrease (96/ét < 0) by anet flow of heat away, i.e. divQ > 0 such
that divQ+ pod6/at = 0.

In steady state heat conduction, the temperature will be constant with time so that o6/ot = 0
giving divQ = 0 and Q must be solenoidal.

Heat conduction equation
We have aready seen that heat conduction is described by Fourier’s first law of heat

conduction: Q =-kgrado where k isthermal conductivity
Therefore divQ =- kdiv gradd = -k V20
But from the continuity equation divQ = -po aa—f
Eliminating divQ gives the heat conduction equation V29 = po 90
k ot

Thisisaso known as Fourier’s second law of heat conduction.
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The quantity LS is known as the ther mal diffusivity.
po

For steady state heat conduction, 60/ét = 0 then | V20 =0

Diffusion equation

The heat conduction equation will also describe the more general process of diffusion, as heat
conduction is a particular example of diffusion.

The diffusion coefficient of a substance is defined by:

flow rate = - diffusion coefficient x concentration gradient
Thisis described by theequation  cv =-D gradc
where ¢ = concentration (mass/vol) and v =veocity (m/s)
This makes the dimensions of the diffusion coefficient, D, = area/ time
Take the divergence of both sides of the above equation to get:

div(cv) = —Ddivgradc = — DV 2c

But the continuity equation gives div(c v)+% =0

Eliminating div(cv) gives the diffusion equation Vic - 1 éc

D ot

Some partial differential equations of physics

We can now write down and compare three very important partial differential equations in
mathematical physics:

L aplace’ s equation

This equation has applications in electricity, magnetism, gravitation and steady- v2¢ =0

state heat flow among many others. The scalar field ¢ may be electric potential, —
gravitational potential, temperature etc., depending upon the application.

Laplace (1749-1827) used it to study the gravitational attraction of extended masses.

Diffusion eguation 109
The obvious applications are in heat conduction and diffusion. Vig=———
The diffusion coefficient, D, becomes k/ po for heat flow. D at

The scalar field ¢ may be concentration, temperature, partial pressure, depending upon the
application.

Joseph Fourier (1768-1830) developed Fourier series as a means of solving it. We will come
across Fourier series later this term.

Wave equation
Y ou will have encountered the wave equation in your waves course in the first year. It
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describes the behaviour of all waves that propagate at constant speed and , 1 52¢
constant profile, i.e. they do not change shape as they travel. V= —
The field ¢ may be displacement, pressure, electric field, magnetic field v~ ot

etc. depending upon the nature of the wave (sound wave, €l ectromagnetic wave etc.).
Vv isthe speed of propagation.

Useful relationships

We have already seen a number of vector relationships that give the grad, div or curl of sums
and products of fields. A more complete list is available in exams if you need to use them,
but they will aso be given in exam questions as appropriate. Four more relationships are
presented here which are both useful and interesting. They al involve second order
derivatives.

1. curl grad¢p =0 gradd produces a conservative field, where ¢ is the scalar potential of
that field, and the curl of a conservative field is everywhere zero.

2. divceurlF =0  Weknow that the divergence of a solenoidal field is zero. It is clear,
therefore, that curlF produces a solenoida field and F is known as the vector potential of
that field.

Proof of the relationship is accomplished by expanding the field into its Cartesian
components, i.e. F=Fi + F, + F3k sothat

divcurlF:V,VxF:i @_@ +i ﬁ_@ _,_2 @_i
ox\oy o0z ) oy\oz ox ) 0z\ ox oy

B 0°F, _62F2 N 0°F, _62F3 +82F2 B 0°F, _0
OX0y OX0Z 0y0z 0OYyoOX 0zZ0OX 0zoy

3. divgradp= V?¢  Thisproduces the Laplace operator.

4. curleurlF = Vx(VxF)=V(V.F)-V°F = graddivF-V?F This is one of the more

famous vector relationships as we shall soon see. It will be used in one of the most
remarkable pieces of mathematical physics ever and will form a suitable climax to this course.

To prove this relationship, use the standard relationship for dealing with vector triple
products, i.e. ax(bxc) = (a.c) b — (a.b) c

Leea=b =V and c=F. However, since V is an operator, the order of terms on the right-
hand-side becomes important. If we rewrite the relationship as ax(bxc) = b (a.c) — (a.b) c
so the operators come first in each term, we can see that this is exactly the relationship we
wish to prove.

Ampeére’s law revisited
We have aready derived the differential form of Ampére’' s law for steady currents, curlH = J

This does not allow variations of J with time because div curlH = divJ
But div curlA =0 for any differentiable vector field A, making divl =0

However, the continuity equation gives divJ +88—/: =0 sothat divl = —aa—’t)



There is clearly a time-dependent term missing from Ampére’s law, but we can find it by
making it consistent with the continuity equation.

Substitute for p in the continuity equation from Gauss'slaw divE =p/ g, i.€. p =gy divVE
The continuity equation becomes divJ +§(50 divE)=0
Changing the order of the differential operators gives
divd + div(g0 ﬁj = div(J +&, ﬁj =0
ot ot

It would appear, then, that J in Ampére's law should be replaced by J+go% to allow for

time variations.

oE
Therefore, Ampére’slaw becomes curlH = J+¢, i

Faraday’s law of electromagnetic induction
Faraday’ s law states that:

- rate of change of magnetic
flux through loop

voltage round loop =
Expressing this mathematically gives:

§E.d| :—gﬂyoH.dS where C is the loop in the
C S

diagram and Sis a surface with C asits boundary.

By Stokes's theorem: §E.d| = ”curlE.dS
C S

- JJoue ds- -Z [JiH ds = Lj%ds

Since the surface Sis arbitrary, the integrands must be equal. This gives the differential form
of Faraday’s law as:

oH
CurlgE = — n, —
Ho ot

Just to make sure that the physical dimensions are correct, we see that [E] =V / m so that
[curlE] =V / m?.

Also, po = permeability of free space = 4 x 107 henrys/ metre and henry = volt sec/ amp
ﬁ} _Vs A _

= V/m?
ot Amms

H = magnetising force measured in amp / metre so that { Uy

Notethat B = po H = magnetic induction measured in weber / metre”.
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Maxwell’'s equations

Let us now assemble the various laws of electricity and magnetism that we have encountered
in their differential forms:

Gauss's law of electrostatics divE = p/ g
Gauss' s law of magnetostatics divH = 0
Faraday’s law curlgE = — %
Ampere’slaw curlH = J+go%

These are known as Maxwell’ s equations.

We will use them in their ssmplest possible form which isin free space wherep =0and J = 0.
The equations are now expressed as.

divE = 0 (1) curlE = — “085_? 3)
divH = 0 ) curlH = goi—f ()

Now use the vector identity:  curl curlE = graddivE -V °E

and rearrange it as: V?E = graddivE — curl curlE
. . . ’ oH 0
Using equations (1) and (3):  V2E = curl Ho— | = uog(curlH)
. 0 oE 0°E
and from (4) VZE = Uy 5(80 Ej = Hy goat_z
. - 2 0°H
Similarly, we can obtain: V°H ZHOSOF
: , o, 10%
These are of the same mathematical form as the wave equation V<¢ = o
\

Amazingly, we have discovered waves in electric and magnetic fields (actually, Maxwell got
there first), which propagate at a speed of ]/ UyEy MIS.

With po = 41 x 107 henrys / metre and eo = 8.85419 x 10 farads / metre, we find that the
speed of the waves is 2.99792 x 10 m / s, a number which you ought to recognise as the
speed of light. Mathematical physics doesn’t come any better than thisl!

| hope you have enjoyed the course.
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